YouTube網站被控侵害著作權

  美國新聞記者兼直昇機飛行員 羅伯特爾( Robert Tur )於 7 14 控告近來迅速竄紅的影片分享網站 YouTube 侵害著作權,特爾指稱 YouTube 網站鼓勵用戶拷貝受到保護的影片資料,此舉違反了 2005 年一項美國最高法院的判決( MGM v. Grokster ,該判決認為 P2P 軟體業者若蓄意鼓勵或誘使客戶從事線上盜版行為,即可能構成著作權侵害。


  羅伯特爾聲稱,他所拍攝的
1992 年洛杉磯暴動事件以及 1994 年高速公路上追捕辛普森的直昇機空拍報導影片,未經他的同意就被上傳並在 YouTube 網站上廣為流傳。 特爾亦聲稱, YouTube 網站從他的作品中獲利,同時也侵害了他的著作權,因此提出了 15 萬美元賠償要求並要求網站不得再使用他的影片資料。


  
YouTube 網站發表聲明指出,自獲悉特爾提出告訴的消息後,網站就已經將他的影片撤下,另一方面認為網站的行為完全符合「一九九八年 數位千禧年著作權法案」﹙ Digital Millenium Copyright Act of 1998 ﹚之規定,應受到該法案免責條款的保護

相關連結
※ YouTube網站被控侵害著作權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=728&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
國際能源總署發布2022年再生能源報告,分析全球再生能源發展現況並預估未來趨勢

  國際能源總署(International Energy Agency, IEA)於2022年12月6日發布2022年再生能源報告(Renewable 2022),其整理和分析各國之再生能源政策和市場發展現況,並預測再生能源於2022至2027年間在電力、交通和供熱的部署情況,同時提出相關產業在發展上的主要障礙。報告重點如下:   (1)能源危機加速再生能源成長   烏俄戰爭所導致之能源危機,迫使各國加速其推動再生能源之政策,例:中國的十四五年規劃、歐盟的REPowerEU計畫,以及美國的降低通膨法案(Inflation Reduction Act)等等,將使2022至2027年間全球的再生能源裝置容量提升約2400GW,等同於中國目前電力的總量,其中歐盟、中國、美國和印度在未來五年間所建置之再生能源,將是過往五年的兩倍;而未來五年間全球成長之電力裝置容量中,再生能源的部分將占90%以上,並且,其總裝置容量將於2025年超越燃煤,成為最大宗的電力來源,其中,又將以太陽光電和風電為主要的發電方式。   (2)各國再生能源法制政策仍有進步空間   國家再生能源法制的不確定性、經濟措施不足、許可程序繁冗,以及電網設施的缺乏,都將阻礙再生能源的發展,若能消除該些障礙,包含簡化許可程序、改善競標方式及提升誘因機制,全球再生能源的成長速率將能再提升25%。   (3)再生能源轉換為氫氣之應用將大幅提升   隨著超過25個國家的氫能政策,全球用於電解產氫的風電和太陽光電裝置容量於2022至2027年間將達50GW,提升近100倍,而主要發展之國家為中國,其次則是澳洲、智利和美國。   (4)生質能的需求持續增加並需開發更多元的原料來源   國際對於生質能的需求將持續增加,在未來五年裡預計成長22%。其中,廢棄物和殘渣的利用是生質燃料重要的一環,至2027年時將有約三分之一的生質燃料來自該兩者,而在燃料需求擴增並造成供應壓力的情況下,則有待政策的推動和技術的研發,以開發更多元且永續的生質能原料。   (5)再生能源供熱的發展程度仍無法取代化石燃料   由於越來越多的供熱來源是依賴電力,而電力中再生能源的比例亦不斷提升,因此,2022至2027年間的再生能源供熱將會提升三分之一,而亦有部份原因是來自政策的推動,尤其是遭遇天然氣危機的歐盟。不過,依目前再生能源供熱技術的發展程度,還無法追上傳統化石燃料所能供熱的數量。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解

  美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。   本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。   第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。

OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》

2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。

TOP