「巨量資料應用」


  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。

  在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

本文為「經濟部產業技術司科技專案成果」

※ 「巨量資料應用」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7289&no=57&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
何謂芬蘭科學院(AOF)?

  芬蘭科學院(Academy of Finland, AOF)是隸屬於芬蘭教育、科學及文化部的專業研究資助機構,旨在促進芬蘭科學研究的多樣化及國際化,資助前端突破性科學研究,提供科學技術及科學政策的專業知識,並加強科學研究的地位。芬蘭科學院最高決策單位為七人委員會,委員會主席由科學院院長出任。   底下設有:文化與社會、自然科學與工程、健康醫學以及環境與自然資源四個研究委員會。每一委員會設主席一人委員十人,任期三年。行政單位由大約一百位專家組成,主要工作為準備及執行七人委員會及各研究委員會的各項工作與決策,並撰寫科學報告和研究計畫。   其任務包括獎助大學與研究機構內的科學研究工作與團隊、參與多邊研究計畫的規劃與獎助、資助芬蘭研究人員參與國際研究計畫、評估科研計畫的品質及水準,以及科技政策專業諮詢等。研究範圍涵蓋建築、太空研究、細胞生物和心理學到電子和環境科學研究。

美國州隱私法要求企業揭露資訊 企業應如何平衡隱私法與營業秘密的衝突

美國目前沒有聯邦的隱私法,由各州訂定州隱私法、產業隱私法,要求企業應揭露資訊以提升資訊透明度,然而隱私法要求企業揭露的資訊多涵蓋了企業的營業秘密。美國華盛頓州州長於2023年4月27日簽署《我的健康資料法(My Health My Data Act)》的州隱私法,其將消費者的健康資料廣義定義為「與消費者有關或具合理關聯的個人資料,可用於識別消費者過去、現在或未來的物理或心理健康狀況」,例如醫療相關資料、患者接受醫療服務的精確地理位置、透過非健康資料可推斷得出的資料。「非健康資料可推斷得出的資料」,如零售業者蒐集消費者近期採購的訂單內容(非健康資訊),並透過AI機器學習分析得出消費者可能懷孕的比例及預產期,藉此對該消費者投放零售業者的嬰幼產品的個人化廣告。 於《我的健康資料法》廣義定義「健康資料」下,導致消費者可要求企業提供的資料可能涵蓋了「企業長期累積之消費者使用資料、經演算法分析運用之消費者使用資料、共享消費者資料的第三方企業名單」等企業認為屬於其營業秘密的資料。 為平衡隱私法的資訊透明度及企業想保護其營業秘密,建議企業可先採取:  1.使公司的智財部門與資料保護部門合作,確保公司人員對公司營業秘密標的及範圍的認知一致,並盤點企業所有的營業秘密以製作、持續更新營業秘密清單。 2.企業在揭露受營業秘密保護的資料給消費者前,先與消費者簽訂保密契約,並參考前述營業秘密清單約定契約之保密範圍。 如企業欲採取更完備的營業秘密管理措施,建議參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

保護、分級與言論(上)

TOP