「巨量資料應用」


  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。

  在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

本文為「經濟部產業技術司科技專案成果」

※ 「巨量資料應用」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7289&no=57&tp=1 (最後瀏覽日:2025/12/14)
引註此篇文章
你可能還會想看
歐盟將推出「數位綠色證書」,促進疫情期間成員國內人員之安全入出境

  為防止新冠肺炎之傳播,欲入境歐盟的旅客被要求提供各式健康證明文件,然而在判斷該文件的真實性時,缺乏標準化的格式,導致旅客在入出境歐盟時產生各種問題,也容易產生欺詐或偽造文件的風險。為解決上述問題,歐盟委員會於2021年3月17日表示將推出「數位綠色證書」(Digital Green Certificate),證書分為三種,分別是:「已接種新冠肺炎疫苗證書」、「新冠肺炎檢測結果呈陰性證書」及「已從新冠肺炎痊癒證書」。透過綠色數位證書,希望能解決歐盟在疫情期間,各成員國人員入出境之安全問題。此證書預計將於所有歐盟成員國間通用,並對冰島、列支敦斯登、挪威和瑞士開放。   證書將免費以數位或紙本兩種形式提供,證書上之QR碼中將包含旅客必要個人資訊:姓名,出生日期,簽發日期,有關疫苗、檢測、恢復等等,並含有數位簽名,以確保證書之真實性及安全性。歐盟委員亦將成立一項計畫,使成員國開發特定的驗證軟體,以驗證某證書是否為歐盟所核發。   數位綠色證書不具強制性,將由成員國各自決定具體執行措施,且各成員國對持有數位綠色證書之旅客應公平待之,例如:成員國若接受某非數位綠色證書之疫苗接種證明而得免除某些檢疫或隔離,在相同條件下,成員國亦應接受數位綠色證書發出之疫苗接種證書而同樣免除該項檢疫或隔離。然而,歐盟目前僅接受下列四種被歐盟許可之疫苗:輝瑞(BioNTech Pfizer)、莫德納(Moderna)、AZ(AstraZeneca),及楊森製藥(Janssen Pharmaceutica),其他疫苗目前不被認可。此外,委員會並保證,持證人之個資並不會被成員國所留存。

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

歐盟法院做成先決裁判,臉書粉絲專頁管理員也有責任保護用戶資料隱私

  歐盟法院於2018年6月5日對德國行政法院依歐盟運作條約第267條(267 AEUV),就歐盟個人資料保護指令(95/46/EC)第2、4條之解釋適用,提起的先訴裁判申請做出先訴判決。判決提及利用臉書(Face Book)平台經營粉絲專頁,並獲取臉書相關服務的管理者,同樣負有保護用戶資料隱私的責任。此將影響眾多的粉絲專頁,判決指出不僅臉書,連粉絲專頁的管理員都有保護訪客資料安全的責任。   由於臉書粉絲專業的經營者,並未保存其粉絲的相關資料,既不經手資料處理,更無力影響資料如何呈現,因此主張資料處理的責任應該在於臉書身上,處罰對象也應該是臉書。判決理由指出,臉書作為粉絲專頁相關個人資料的控制者(data controller)應負相關責任並無疑問,但歐盟地區粉絲專業的管理者,應該和臉書一樣,作為資料處理的共同責任者。蓋管理者係運用臉書提供的設定參數,將粉絲專頁的近用者資料蒐集處理,應該負共同責任。因此歐盟法院判決,利用臉書平台經營粉絲專頁,並獲取臉書相關服務的管理者(administrator),並不能免於個資保護法律的法遵義務。   另外依據德國聯邦資料保護與資訊安全委員會(BFDI)意見,認為雖然判決是基於一般資料保護規則(GDPR)生效之前就已經存在的法律,但法院所確定的共同責任原則也適用於新的法律。BFDI特別建議公共機構以歐盟判決為契機,審查公共機構粉絲頁面的合法性與是否遵守法律規定,並在必要時說服Facebook調整資料保護。

TOP