美國聯邦政府於2013年12月啟動「挑戰智慧美國」(the SmartAmerica Challenge)計畫,目標是匯集產官學研以呈現網實整合系統(Cyber-Physical System, CPS)與智慧聯網如何能夠創造就業機會、新的商業機會、以及為美國帶來社經上之利益。2014年6月,24個技術團隊及超過100個組織機構共同於華府進行智慧聯網應用展示,藉此展現智慧聯網如何促進運輸、緊急服務、健康照護、安全、節能、以及製造。於整合性之解決套案上,「挑戰智慧美國」計畫選定加州的聖荷西市(The City of San Jose),由聖荷西市政府與Intel公司共同建立「智慧聯網智慧城市示範平台」(IoT Smart City Demonstration Platform)。研究團隊於城市各處廣泛裝置感測器,蒐集空氣品質、噪音、交通流量、能源效率等相關資料,藉此試驗城市如何利用智慧聯網技術來改善在地市民的整體生活。在我國,2014年則可稱為智慧城市發展元年,經濟部技術處與工業局等中央政府機關與新北市、桃園縣、新竹市、台中市等地方政府皆相繼投入並推動智慧城市計畫。搭配軟硬體之技術整合與相關產業之參與、以及法人與學術機構之投入,我國透過智慧聯網與網實整合系統以發展智慧城市之未來值得期待。
本文為「經濟部產業技術司科技專案成果」
美國在醫療費用的支出常常超乎預期,其中處方藥之花費就佔了相當大的比例。為了減少醫療費用支出,並讓藥物之價格更為透明,加州州長傑瑞布朗(Jerry Brown)在2017年10月9日簽署了第17號法案(藥價透明化法案),要求藥物製造商若要調高處方藥價格超過一定程度,則須事前通報給主管機關;該法預計於2018年10月1日生效。 藥價透明化法所稱之處方藥(prescription drugs),包含學名藥、原廠藥或特種藥品。本法之主管機關為「加州衛生計畫與發展辦公室」(Office of Statewide Health Planning and Development, OSHPD),掌管本法之執行並對違規製造商處罰民事罰款,本法案施行之相關細節亦由OSHPD訂定。OSHPD依據本法所得之罰款或收入,將全數交給「照護管理基金」(Managed Care Fund)做運用。 依據藥價透明化法規定,處方藥製造商對於其處方藥產品若欲調高產品公告目錄價(Wholesale Acquisition Cost, WAC)超過40美元/療程之漲幅者,須將處方藥漲幅、漲價原因、藥品使用情況或市場等資訊,以「季」為單位,至少於漲價生效60天前通報給加州衛生計畫與發展辦公室。若該藥品為新產品,其WAC超過「醫療保險處方藥物改良和更新法」(Medicare Prescription Drug, Improvement, and Modernization Act)所定之價格區間者,須於新產品上市後3天內通報給OSHPD。 OSHPD在收到處方藥製造商的通報資訊後,則須依法將資訊公開於其網站上。
歐盟將對微軟反托辣斯法進行聽證據報導指出,歐盟競爭委員會(European Union Competition Commission)安排將於六月初針對微軟視窗作業系統搭售的IE瀏覽器的行為進行口頭聽證。此項指控最初是在2007年12月由Opera Software ASA所提出。從今年一月起,數個主要瀏覽器大廠,如:分別開發出Firefox和Chrome的Mozilla及Google,都以第三方的身份參加本案。在數週前,一個包含Adobe、IMB和Oracle等競爭公司的商業團體也以第三方的身份取得參與六月份聽證的管道。當然,微軟亦可趁此機會來回應歐盟對其因搭售IE而扭曲瀏覽器競爭市場的指控。 另據報導指出,微軟在回應期限到期前所遞交的機密文件中有說明,歐盟若對微軟視窗作業系統制定規範,將會使Google在網際網路搜尋市場上,獲得更主導性的地位,這將不利於網際網路搜尋市場的競爭。微軟的主要理由是,Opear和Mozilla已和Google取得協議,Google搜尋引擎將成為該二公司瀏灠器的預設搜尋引擎,Google的瀏覽器Chrome自亦是如此。此外,如果顯示電腦使用者選擇何種瀏覽器的螢幕是由電腦製造商所製造,Google將可直接和這些製造商合作,使Google搜尋引擎成為預設搜尋引擎。微軟同時宣稱,要求將其他公司的瀏覽器附加於微軟視窗作業系統上會侵害其品牌權利,並使其負擔潛在的智慧財產責任。 此案經過聽證後,可能仍需要好幾年才會有結論。
德國車輛及其系統新技術研發計畫德國經濟與能源部於2017年11月公布車輛及其系統新技術補助計畫期中報告,補助的研究計畫聚焦於自動駕駛技術及創新車輛技術兩大主軸。 在自動駕駛研究中,著重於創新的感測器和執行系統、高精準度定位、車聯網間資訊快速,安全和可靠的傳輸、設備之間的協作、資料融合和處理的新方法、人機協作、合適的測試程序和驗證方法、電動汽車之自動駕駛功能的具體解決方案。其中以2016年1月啟動的PEGASUS研究項目最受關注,該計畫係為開發高度自動化駕駛的測試方法奠定基礎,特別是在時速達130公里/小時的高速公路上。 在汽車創新技術的研究發展上,著重於公路和鐵路運輸如何降低能源消耗和溫室氣體排放,包括透過交通工具輕量化以提高能源效率、改善空氣動力學之特性、減少整體傳動系統的摩擦阻力、創新的驅動技術。另外,也特別注重蒐集和利用在車輛操作期間產生的資料,例如在於操作和駕駛策略的設計,維護和修理,或車輛於交通中相互影響作用。 本報告簡介相關高度實用性技術研究計畫,同時展望未來研究領域,以面對現今產業數位化的潮流和能源效率及氣候保護的發展的新挑戰,因此,資通訊技術、自動控制技術以及乾淨動力來源技術,將會是未來交通領域研究的重點。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)