何謂物聯網(Internet of Things, IOT)?

  物聯網是指明確可辨識的實體物件與虛擬的類網路代理架構的聯結。它是由馬克.維瑟於1991年所提出,指的是(個人)電腦作為機具設備的形式未來將逐漸消失,而替換為"智慧元件"的形式。當前人們關注的對象已經不再是物體本身,而是人們的各種活動中的物物相連。其在不知不覺中已經提供人們各式各樣的輔助,例如小型化的嵌入式電腦毋需操作,就可以提供各式各樣的輔助。這種微型的電腦,即所謂的穿戴式裝置,可以最大程度地結合不同感應器直接在服裝上出現。

  數位化在多個層面正在改變我們的生活和工作方式。現代資訊技術幾乎使任何對象無論是家庭日常物品或工廠內的機器,都能用最小的空間達到強大的計算能力(所謂的“嵌入式系統”)。烤麵包機,洗衣機和機床都可由軟體控制,並可以透過網際網路相互、或與外部世界聯結。

  物聯網在居家領域具體將以智慧住宅(Smart Home)形式呈現。運用智慧聯網技術將能獲得更多的舒適性和安全性、節約能源或提供適合各年領階層的生活與和起居。現有的解決方案可以透過智慧型手機遠端控制進行空調、電爐和燈具的使用。未來,洗衣機甚至可以自動尋找最優惠的電價決定洗衣服的最佳時間。

  智慧家居若要成功,需得到消費者的接受。故物聯網解決方案必須具有可信賴性(資料保護、資訊安全)、能夠持久並可靠地運作,並能夠在未來繼續穩定地投入智慧家庭的行列。對於製造商和供應商而言,應該以在新的立場和視角來開拓一個新的市場。

本文為「經濟部產業技術司科技專案成果」

※ 何謂物聯網(Internet of Things, IOT)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7292&no=57&tp=5 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

加拿大隱私專員與首席選舉官針對聯邦政黨發布個人資料保護指引

  加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)與加拿大首席選舉官(Chief Electoral Officer of Canada, CEO)於2019年4月1日聯合針對聯邦政黨發布個人資料保護管理之指引(Guidance for federal political parties on protecting personal information)。目前加拿大選舉法(Canada Elections Act, CEA)僅概括規範政黨須制定隱私政策,以保護選民之個人資料,惟其卻未有具體法規制度落實。對此加拿大隱私專員辦公室認為政黨必須提出具體隱私政策來履行其法律義務。   現行加拿大選舉法規範聯邦政黨必須於其網站上公布隱私政策,並提交給加拿大選務局(Elections Canada)。若其隱私政策變更,必須通知首席選舉官,且即時更新網站上隱私政策版本。加拿大聯邦各政黨須於2019年7月1日前完成相關規範,為具體實踐政黨隱私保護制度,加拿大隱私專員辦公室提出幾點隱私政策之必要條件: 一、 聲明蒐集個人資料之類型與如何蒐集個人資料? 二、 如何保護其蒐集之個人資料? 三、 說明如何利用個人資料?是否會將個人資料給予第三方? 四、 針對個人資料蒐集、利用之人員如何培訓?內部控管機制為何? 五、 蒐集分析之資料為何?是否有利用cookie或相關應用程式蒐集? 六、 設置處理個資隱私疑慮專責人員   除此之外,該辦公室更建議參採國際隱私保護作為,著重公平資訊原則,政黨於個資隱私保護上須有其問責制、目的明確性、透明化、限制性蒐集,且未經當事人明確同意不得蒐集政治觀點、宗教或種族等敏感性個資,並應建置保障性措施與合規性管理機制。

達成京都議定書減量目標 提昇能源效率比課碳稅衝擊小

  因應京都議定書,經濟部日前引用學界研究報告發現,我國若依議定書原則達成溫室氣體減量目標,總計需投入經費達五八七八億元至八七○八億元。為達成這項目標,政府採取提升能源效率的作法,比直接課徵碳稅,對國內經濟衝擊力道較小。   根據國際能源總署公布資料顯示,台灣CO2排放總量達二億一七三○萬公噸,人均排放量達九.八公噸,皆高於全球平均值,每單位CO2排放所創造的GDP為一.八九(美元/公斤CO2)也較OECD等先進國家平均值低。   經濟部內部歸納CO2減量效果不佳的原因,除政策上採非強制處理態度外,過去十年間,石化、鋼鐵等高耗能產業結構調整緩慢,加上半導體及液晶面板等大量使用全氟化物、六氟化硫的產業訊速成長,使得工業製程中排放的CO2等溫室氣體大幅成長更是主要原因。   依京都議定書條約精神及國際環保現況,我國與南韓同屬網要公約非附件一成員中的「新興工業國」,成為公約下一階段管制對象。致使抑制國內激增溫室氣體排放量已成為我國政府迫切須處理的課題。   在經濟部這份內部研究報告中,也引用臺灣大學農業經濟系教授徐世勳等學者的研究推估,如果台灣要達到京都議定書的要求,將CO2排放量控制在一九九○年水準,則減量成本將達新台幣五八七八億元至八七○八億元。   而學界的這項研究也針對開徵碳稅稅率不同對台灣經濟影響進行評估,推估當對每公噸CO2排放課徵六○○元碳稅時,對經濟成長衝擊為負○.六%,調高至七五○元時,所造成的衝擊則更達負○.七一%。

數位商品交易金流機制之法律問題

TOP