行動健康是指利用行動應用程式與智慧手機、平板、或無線裝置等行動裝置結合,運用這些裝置的核心功能,如聲音、簡訊、定位系統、藍芽、或3G、4G行動通信技術等,作為健康照護用途,以提升傳統照護品質與管理健康,減少醫療成本耗費。倘若行動應用程式具有醫療用途,可用於診斷、治療、預防疾病等,則屬於醫療器材,且該應用程式通常為醫療器材之附件,或與行動裝置結合使用而成為醫療器材,對此則稱之為行動醫療。
隨著智慧聯網(IoT)的應用,國際間對於行動健康與醫療的發展日益著重,除了鼓勵創新研發之外,也紛紛制訂法規政策因應,包括美國食品藥物管理局(FDA)在2013年9月公布行動醫療應用程式指導原則(Mobile Medical Application, Guidance For Industry and Food and Drug Administration Staff),並於2015年2月修訂;歐盟2012年提出eHealth 行動計畫(eHealth Action Plan 2012-2020),並在2014年4月針對行動健康的管理規範議題開放各類相關人士進行公共諮詢,後續在2015年1月公布諮詢結果。我國亦在2015年4月公布醫用軟體分類參考指引,以提供產業開發產品、申請查驗登記之參考。
未來,行動健康與醫療的發展將持面臨挑戰,相關問題包括行動健康與行動醫療之區分標準、行動醫療應用程式與傳統醫療軟體之監管差異、行動健康應用程式開發使用之自律性規範、使用者或病人隱私與個人資料保護、以及在研發過程中涉及的研究倫理等議題。
本文為「經濟部產業技術司科技專案成果」
國際海事組織(International Maritime Organization, IMO)所屬之海事安全委員會(Maritime Safety Committee, MSC)於2018年12月召開第100屆大會(MSC 100),本屆會議批准海上自駕船舶監管架構,要點如下: 一、盤點相關國際海事組織規範,以確認該規範: 是否適用於海上自駕船舶(Maritime Autonomous Surface Ships, MASS)及是否妨礙其運作與航行;或 是否適用於海事海上自駕船舶且不妨礙其運作;或 是否適用於海事海上自駕船舶且不妨礙其運作,但需要進一步調修。 MSC預計相關規範之盤點結論將於2019年6月前完成,並期待於2020年完成相關法規調適,盤點範圍包括:安全規範(SOLAS)、碰撞規範(COLREG)、載重線與穩度(Load Lines Convention)、海員與漁夫訓練(STCW, STCW-F)、搜尋與救援(SAR)、噸位丈量(Tonnage Convention)、貨櫃安全(CSC)、以及特殊貿易客船(SPACE STP, STP)。 二、 定義海上自駕船舶之自動化等級: 等級1:配備有自動化處理與決策支援船舶,海員仍於船上對船舶系統及相關功能進行控制。某些功能可以於無人監控下自動化運作,但船員於船舶上仍應於自動駕駛系統發生故障時進行人為介入。 等級2:有船員隨船之遙控控制船。該船舶係由岸上人員控制,惟船上之船員可於必要時介入並接手運作該船舶之自動駕駛系統與功能。 等級3:未有船員隨船之遙控控制船,該船舶由岸上人員控制。 等級4:全自動化船舶,船舶之自動駕駛系統可自行做出決策並反應。 此外,MSC預計提出海事海上自駕船舶航行指引(Guidelines on MASS trials),該指引將於下一會期(MSC101)之國際海事委員會會議進行草擬。
英國倫理機構針對海量資料(big data)之使用展開公眾諮詢調查納菲爾德生物倫理學理事會(Nuffield Council on Bioethics)成立於1991年,是一家英國的獨立慈善機構,致力於考察在生物與醫學領域新近研究發展中所可能牽涉的各項倫理議題。由該理事會所發表的報告極具影響力,往往成為官方在政策決策時之依據。 有鑑於近年big data與個人生物和健康資料的分析使用,在生物醫學研究中引起廣泛的爭議討論,此間雖然不乏學者論理著述,但對社會層面的實質影響卻較少實證調查研究。Nuffield Council on Bioethics於日前發布一項為期三個月(2013/10/17~2014/01/10)的生物暨健康資料之連結使用公眾諮詢調查計畫(The linking and use of biological and health data – Open consultation)。此項計畫之目的在於,瞭解更多有關資料連結與使用時所可能導致之傷害或可能的有利發展。並研析適當的治理模式和法律措施,使得民眾隱私權保護與相關研究之合法性得以兼顧,俾使更多人受益。 為執行此項計畫,Nuffield Council on Bioethics延攬健康照護資訊技術、資訊治理、健康研究、臨床診療、倫理和法律等領域專家組成計畫工作小組,由工作小組廣泛地蒐集來自民眾與各類型組織的觀點,探詢當民眾在面對個人的生物與健康資訊相互連結、分析時,民眾對當中所牽涉倫理議題之看法。該項公眾諮詢調查將針對以下重點進行: 1.生物醫學資料之特殊意義 2.新的隱私權議題 3.資料科學和資訊技術發展所造成之影響 4.在研究中使用已連結的生物醫學資料所可能帶來的影響 5.在醫學臨床上使用已連結的資料所可能帶來的影響 6.使用生物醫學研究和健康照護以外的生物醫學資料所可能帶來的影響 7.探討能夠在倫理上支持連結生物醫學資料的法律和治理機制 由於Nuffield Council on Bioethics被視為英國科學界的倫理監察員、政府智囊團,因此未來調查報告發布後對相關政府政策所可能產生的影響,當值得我們持續關注。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國政府管考辦公室提出醫療產業資訊化政策評價報告美國之政府管考辦公室( Government Accountability Office )針對聯邦政府推動醫療產業導入資訊應用之相關措施及作為,九月初向參議院政府再造委員會( Committee on Government Reform, House of Representatives )下轄之聯邦人事暨組織次委員會( the Subcommittee on Federal Workforce and Agency Organization )提出報告,綜合回顧 2004 以來之各項政策宣示及執行規劃,指出目前猶有未足之處以及今後適宜更加留意之方向。 簡言之,醫療產業導入資訊應用,可望帶來降低營運成本,提升經營效率,防免發生過誤,維護病患安全等諸多實益,已為各界所共認。另由於聯邦政府介入醫療產業之程度與影響層面既深且廣,不僅本諸規制角度主管產業,更推動諸多施政,投入大量資金,提供老人、傷殘、兒童、低收入戶、原住民、退伍軍人、退休公職人員等不同社會族群各式相關服務,從而責成聯邦政府領銜推動醫療產業導入資訊應用,藉此提升醫療之品質及效率,應屬妥適。 自 2004 年提出行動綱領以降,聯邦政府即已陸續接櫫各項目標及其實施策略,並區分病歷資料格式、傳輸互通標準、網路基礎架構、隱私安全議題、公衛服務整合等面向分別開展,獲致相當成效。惟據管考辦公室之分析,既有之政策措施及各項作為,似乏詳盡之細部規劃及具體之實踐要項可資遵循,亦無妥善之績效評比指標以利參考。由是觀之,迄今之努力及其成果固值稱許,然就 2014 年普遍採用電子病歷並且得以交流互通之願景而言,還有很多需要努力的地方。