「何謂行動健康?」

  行動健康是指利用行動應用程式與智慧手機、平板、或無線裝置等行動裝置結合,運用這些裝置的核心功能,如聲音、簡訊、定位系統、藍芽、或3G、4G行動通信技術等,作為健康照護用途,以提升傳統照護品質與管理健康,減少醫療成本耗費。倘若行動應用程式具有醫療用途,可用於診斷、治療、預防疾病等,則屬於醫療器材,且該應用程式通常為醫療器材之附件,或與行動裝置結合使用而成為醫療器材,對此則稱之為行動醫療。

  隨著智慧聯網(IoT)的應用,國際間對於行動健康與醫療的發展日益著重,除了鼓勵創新研發之外,也紛紛制訂法規政策因應,包括美國食品藥物管理局(FDA)在2013年9月公布行動醫療應用程式指導原則(Mobile Medical Application, Guidance For Industry and Food and Drug Administration Staff),並於2015年2月修訂;歐盟2012年提出eHealth 行動計畫(eHealth Action Plan 2012-2020),並在2014年4月針對行動健康的管理規範議題開放各類相關人士進行公共諮詢,後續在2015年1月公布諮詢結果。我國亦在2015年4月公布醫用軟體分類參考指引,以提供產業開發產品、申請查驗登記之參考。

  未來,行動健康與醫療的發展將持面臨挑戰,相關問題包括行動健康與行動醫療之區分標準、行動醫療應用程式與傳統醫療軟體之監管差異、行動健康應用程式開發使用之自律性規範、使用者或病人隱私與個人資料保護、以及在研發過程中涉及的研究倫理等議題。

本文為「經濟部產業技術司科技專案成果」

※ 「何謂行動健康?」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7294&no=57&tp=5 (最後瀏覽日:2025/12/21)
引註此篇文章
你可能還會想看
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

美國德克薩斯州承認針對紙本文件的遠端墨水公證為法定線上公證方法

美國《德克薩斯州政府法(Government Code),以下簡稱政府法》的第406節「公證人、契約證明人(Notary Public; Commissioner of Deeds)」相關修正案於2024年1月1日正式生效,旨在針對該節的第406.101分節以下的線上公證相關規範,透過擴充線上公證要件,使遠端墨水公證(Remote Ink Notarization, RIN)成為法定線上公證方法,並明定相關程序要求,確保遠端墨水公證機制的安全性。 針對遠端墨水公證,依照美國土地產權協會(American Land Title Association, ALTA)提出的定義,係指文件透過影音媒體平台進行遠距公證,且無須經過多因子驗證。針對遠端墨水公證,雖然在新冠肺炎(COVID-19)流行期間,曾透過州長行政公告方式,承認在滿足指定條件下,得使用遠端墨水公證方式,進行交易,而本次修法則透過修正現有法規,以達到允許進行遠端墨水公證,且同時維持法定電子公證制度的安全架構。 本次修法內容如: 1.定義文件可包含實體及電子文件。 2.針對經電子公證的實體文件,承認委託人及公證人分別得使用實體符號(tangible symbol)及符合法定要求的辦公室印章,進行簽署。 3.強調電子公證應留存之紀錄內容,並非電子文件,而應留存文件的類型、標題及描述等規定。 跨境或電子交易已逐漸成為主流交易方式,而透過現行電子公證制度,雖然能夠強化電子或實體文件的可信性,惟公證制度實際上僅能針對公證當下的文件內容,提供擔保效力。若企業需要確保在公證前,相關文件內容未經偽變造,則必須在文件生成後落實適當資料管理措施。與此同時,公證人基於法規要求,對於經公證的電子、書面文件或公證紀錄等,負有法定保存或保密義務。若相關文件或紀錄發生外洩、外流等問題時,公證人除須負擔契約損害賠償責任外,甚至可能被科以刑責。因此,不論企業或公證人均可參考「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,建立系統性的資料管理機制或強化既有管理機制,避免發生資料偽變造或外洩等問題。 本文同步刊登於TIPS網(https://www.tips.org.tw)

日本有關循環經濟新法規「塑膠資源循環促進法」將於2022年4月1日正式上路

  日本率先亞洲地區將於2022年4月1日實施「塑膠資源循環促進法」(プラスチック資源循環促進法),其係著重於產品設計階段至塑膠廢棄物排放、再利用等整個產品生命週期,來促進塑膠資源循環運用,主要措施內容包括: ①抑制塑膠廢棄物的排放、再資源化的環境設計(該法第1、2章) ②一次性利用塑膠產品的使用合理化(該法第3、4章) ③塑膠廢棄物的分類收集、自主回收、再資源化(該法第5、6、7章) 例如:   設計、製造階段,有明示塑膠製產品設計指導方針,可透過減少塑膠用量來製作產品、調整尺寸和形狀方式,進行塑膠製產品之設計,並創建國家優秀設計認定制度,被國家認定之產品,可獲得政府優先購買,會提供消費者資訊使其更容易選擇環保產品。   使用階段則要求企業經營者合理化提供免洗餐具等12種一次性塑膠製產品,其指導方針有是否採取有償方式提供、或是否有回饋措施予拒用免洗餐具之消費者等措施。   塑膠廢棄物處理階段,係指針對排出塑膠廢棄物之企業經營者有責任妥善處理塑膠廢棄物等,倘企業經營者在其選擇之措施中有顯著不足情形,國家會以勸告、命令方式命其改善。   回收、再利用階段,則是針對塑膠回收類型作最小限制,本制度設立了對該塑膠廢棄物進行再商品化的機制,重新修改分類規則,擴大塑膠資源的回收量,且針對回收自治體得補貼地方交付稅等部分費用,減輕其成本。

TOP