日本產業競爭力強化法內之灰色地帶消除制度

  日本經濟產業省(以下簡稱經產省)為了落實安倍內閣提出之日本再興戰略,希望透過相關法制規範之調整,促進產業新陳代謝機制,並喚起民間的投資,進一步解決日本國內企業「過多限制、過小投資、過當競爭」現象,前於2013年10月15日將「產業競爭力強化法」提交國會審議。經日本國會審議後,該法已於同年12月6日公布,計有8章、共156條之條文,另有附則45條,並取代原先於2011年修正之產業活力再生特別措施法的功能。因產業競爭力強化法之內容屬政策性規範,搭配之施行細則、施行令等也陸續於2014年1月20日公布。

  自產業競爭力強化法施行後,對於日本企業預計開發新產品和新技術等放寬限制,讓企業有機會進入與原業務不同之領域,並進行業務整編。舉例而言,依該法第9條第1項之規定:「欲實施新事業活動者依據主務省令規定,可向主務大臣提出要求,確認規定其欲實施之新事業活動及與其相關之事業活動的規範限制之法律和其所根據法律之命令規定的解釋,以及該當規定是否適用於該當新事業活動及與其相關之事業活動」之規定,就相關事業活動是否符合法令與否,向經產省申請解釋。

  此一制度被稱為「灰色地帶消除制度」,目的在於使日本企業規劃新事業之前,可先洽主管機關瞭解該新事業活動涉及之業務是否合法,在經產省網站上已有SOP與申請表格可供參考。而此制度功能在於透過日本主管機關的闡釋、說明或認定相關計畫,讓有意從事創新活動的業者有如吞下定心丸,得以積極規劃、推動後續作業。

本文為「經濟部產業技術司科技專案成果」

※ 日本產業競爭力強化法內之灰色地帶消除制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7296&no=57&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

德國柏林高等法院(LG Berlin)判決「Facebook」違反聯邦資料保護法

  德國柏林高等法院(LG Berlin)於2018年1月16日在德國聯邦消費者中心協會(Verbraucherzentrale Bundesverband)對 Facebook提起之訴訟中,判決 (Az. 16 O 341/15)Facebook網站之預設功能(Voreinstellungen)和部分使用及資料保護條款(Nutzungs- und Datenschutzbedingungen),違反德國聯邦資料保護法(Bundesdatenschutzgesetz)之相關規定,因此,部分針對企業徵求用戶同意使用其資料之條款被判定無效。   Facebook在其隱私設定中心隱藏對用戶資料保護有利之默認設置,且在新用戶注冊帳戶時未充分告知,故未符合用戶同意條款之要求。依據聯邦資料保護法之規定,個人資料僅允許在相關人同意下徵集及使用。為讓用戶能在知情下自行判斷是否同意個資使用,網路供應商須清楚、詳盡告知資料使用之方式、範圍及目的。但Facebook並未遵守該項要求,Facebook在手機App上已自行啟用定位服務,一旦用戶使用聊天功能,將透露其所在位置。尤其在隱私設定中,已預設各種搜尋引擎可取得用戶個人版面之連結,任何人均可快速和簡易的透過此種方式,發現任一用戶在Facebook上的個人資訊。因用戶能否被事先告知無法確實保障,對此,法官判定5項Facebook備受聯邦消費者中心協會批評的預設功能無效。   此外,柏林高等法院亦宣告8項包括預擬同意之服務條款無效,依照這些條款之規定,Facebook可將用戶之姓名和個人資訊運用於商業、贊助商或相關事業之內容,且其條款並未明確說明,哪些資料會被傳送至美國,以及其後續處理過程與所採用之資料安全標準為何。法官認為,上述預擬條款之意思表示並非有效之資料使用同意授權。此外,用戶在Facebook僅可使用實名之義務亦屬違法,德國聯邦消費者中心協會對此表示,電信媒體法(Telemediengesetz; TMG)規定,網路供應商須儘可能讓網路用戶匿名或他名參與網路運作,然而柏林高等法院對此觀點仍持保留態度。   柏林高等法院於判決中強調,本案單就聯邦消費者中心協會對Facebook之用戶使用條款是否有效提起之訴進行判決,並非判斷支援此些條款運作的資料處理過程之合法性。儘管如此,法院之見解仍可能對資料處理過程合法性之判斷造成影響。該項判決目前仍未最終定讞,故本案兩造皆可上訴柏林最高法院(Kammergericht),尤其聯邦消費者中心協會認為,Facebook以免費使用為廣告宣傳用語,不無誤導消費者之可能,故將對此提起上訴。至於未來本案上訴至柏林最高法院後之發展,關係個人資料保護程度之擴張及網絡供應商可用範圍之限制,故仍須持續關注。

加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。   當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。   根據2009年之管理架構,CRTC宣示了四項管理原則: 1.透明度(Transparency) ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。 2.創新(Innovation) 解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。 3.明確(Clarity) ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。 4.競爭中立(Competitive neutrality) 對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。   值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。   在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

美國放棄建立全國性免費無線寬頻網路計畫

  四年前,由M2Z網路公司(m2znetworks)向FCC建議,以AWS頻段(1.9GHz~2.1GHz建立)建立高速寬頻網路,並將運用其中一部份,建立速率達768Kbps的網路服務,在十年的期間內,免費提供公眾使用。M2Z計畫與美國各地申請BTOP(Broadband Technology Opportunities Program,寬頻技術機會計畫)補助的地方政府合作,建立免費無線寬頻服務。後續營運的支出將以廣告、與合作伙伴的收益及自有資金支應,並將支付收益的5%給美國財政部。   在經歷諸多考量後,2010年9月,FCC認為這並非一個好的政策措施,並向M2Z公司表示,將不支持這項計畫,而將繼續透過全國寬頻計畫以及普及服務基金的運作,促使寬頻網路普及化。   當M2Z提出這項計畫時,引起非常多的爭論,因其計畫初期提出將建立過濾色情內容的機制,使其成為家庭友善的服務。之後,包括頻譜使用的干擾以及768Kbps的免費網路是否符合需求,也引起其他網路服務商的反對,。而FCC所公布之國家寬頻計畫,其基礎目標是4Mbps之寬頻接取,因此M2Z的計畫顯然已經不合乎FCC的整體規劃。   消息公開之後,許多無線產業紛紛認同FCC的看法,如反對本項計畫最力的CITA無線協會即發表聲明表示,FCC放棄這項構想是正確的決定,因為M2Z的計畫將不能充分發揮AWS頻段的價值,同時提供的服務速度也太緩慢不符合公眾利益。FCC應回歸國家寬頻計畫,合理的規劃整體頻譜資源,釋出更多頻譜提供無線寬頻市場新的機會。

TOP