美國創新戰略(Strategy for American Innovation)係美國經濟委員會(National Economic Council,NEC)及白宮科技政策辦公室(Office of Science and Technology Policy,OSTP)於2009年9月所提出的重要科研指導政策,為美國近年調整科研發展之依據,曾分別於2011年2月及2015年10月配合時事增補最新內容。該政策主要在說明美國政府、國民與企業應如何共同努力進行全面性的創新,強化長期的經濟成長;在此基礎上發展對於美國產業發展具有優先重要性的技術領域。最初提出時內容包括:1.美國創新基石之投資;2.促進以市場為導向的創新;3.以及針對國家需求的優先順位催化重要的科技突破。
白宮在2011年4月進一步提出一些重要的創新促進新機制,包括改革專利制度、重視數位教育以及基礎科學教育的強化、加速發展再生能源、提振美國創業精神(entrepreneurship)等。隨著政策的逐步推行,2015年10月公布之最新版本,內容包括:1.投資創新基石;2.刺激私部門進行創新活動,並研議租稅優惠永久制度化;3.營造一個創新者國家,改善創業環境,協助更多創新者成功創業。並且在政府機關間強調創新,另著重於從私部門的根本改變其活動和行為模式,提升創新層次才能確實將創新成果在產業間創造出來。
本文為「經濟部產業技術司科技專案成果」
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。
南韓政府推出新的無線網路推動計畫 搶佔智慧行動發展先機韓國通訊委員會(Korea Communications Commission,KCC)主席Choi See-jung於2010年4月21日宣布韓國政府將推動一項新的「無線網路活化計畫」(comprehensive plans for wireless internet activation),預計在未來五年間投入1兆5000億韓圜,與民間共同合作發展無線網路建設,以搶佔智慧行動領域的發展先機。 因應智慧手機發展速度倍增在政治面上帶來的需求,韓國政府希望透過本計畫能將南韓建設成「智慧行動領域的發電所(powerhouse)」。並據此願景規劃了4個政策目標、10項策略方案。此四個政策目標包括:確保在智慧行動領域的全球競爭力、推動智慧手機的普及與生產應用、營造世界最高水準的無線寬頻網路、強化下世代行動科技的發展與人才培育。 KCC將組成「網路去管制推動小組」(Internet de-regulation promotion team),於4月底開始著手進行包括定位資料保護、用戶識別系統和智慧手機的金流安控等領域的法規檢視與修正工作。 KCC預測能藉此創造12,535個工作機會、促進3,648億韓圜的產值。KCC同時解釋,透過對無線網路的活化應用,支持在各層面的創新應用發展(包括醫療服務、商業活動、教育等領域),此時正是奠定韓國成為行動服務核心業務強國的時機。
紐西蘭隱私專員辦公室「揭露涉及隱私案件之機關名稱」政策生效紐西蘭隱私專員辦公室日前針對「是否及如何揭露涉及隱私案件之機關(公務機關或非公務機關)名稱」發布政策;該政策自2014年12月1日起生效。 根據紐西蘭1993年隱私法的規定,隱私專員可決定公開有助於貫徹隱私法立法意旨的資訊等;只要符合此規定,原則上隱私專員也可揭露涉及所調查隱私案件之機關名稱。據此,紐西蘭隱私專員辦公室即於日前針對是否及如何揭露上述機關名稱制定並公布政策。 須說明的是,即使機關確有違法情事,其名稱亦不必然會被揭露,如果有法律上原因或有理由認定不適揭露時,則隱私專員將不會簽署授權揭露之文件。 根據該政策,如機關違反隱私法之行為將導致難以回復之損害、其行為將導致嚴重之後果、該機關被認定為故意違反法律、揭露機關名稱有利於公益,或存在不揭露機關名稱將導致同領域、產業之其他機關受到不合理之牽連或不利益等情形時,則違反機關之名稱較可能被揭露。反之,如果僅屬單一事件、機關之行為較不至於致不利影響,或存在揭露機關名稱反不利於公益等情形時,則機關名稱則較可能不會被揭露。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。