什麼是「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)?

  為重塑美國先進製造技術領導地位,發展創新研發與就業,美國總統歐巴馬陸續啟動先進製造國家戰略計畫、先進製造夥伴計畫(Advanced Manufacturing Partnership, AMP)與國家製造創新網絡(National Network of Manufacturing Innovation, NNMI)等框架計畫,並於2014年10月由美國總統執行辦公室和科技顧問委員會發布「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)。

  其中新版的先進製造夥伴計畫,除續行原先之計畫目標,例如:對於「研發技術政策形成」、「區域創新機構」與「全國製造創新網絡」等要項外,「先進製造夥伴2.0」框架強調「製造業資源如何有效匯集」,另透過「組織角度設計」、「法制環境建構」與「商業化運用促進」等面向提出具體執行建議。

本文為「經濟部產業技術司科技專案成果」

※ 什麼是「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7299&no=57&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫

  於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。   中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。   為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。

美國國家安全局發布「軟體記憶體安全須知」

  美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下:   1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。   2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。   3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。   搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。

英國通過《電子貿易文件法》,將透過「可信賴系統」的要求強化電子貿易文件的證明效力

英國國會於2023年7月上旬通過《電子貿易文件法》(Electronic Trade Documents Act 2023, ETDA),經國王於7月20日正式批准,該法於2023年9月20日正式生效,未來英國的電子貿易文件將與紙本貿易文件具有相同效力。 一直以來,英國僅承認紙本貿易文件的法律上效力,因此英國企業在進行國際貿易的各環節上,必須處理上百頁的紙本文件,造成英國企業及其交易對象必須花費相當高的時間和金錢成本,不僅效率低且造成環境破壞,同時紙本文件也較難驗證其真實性。在數位轉型趨勢下,此類陳舊的法律早已不合時宜,因此美國、新加坡、德國等國家也正在進行類似立法,而英國是七大工業國組織(Group of Seven, G7)中第一個完成立法的國家。 該法正式施行後,可大幅降低英國企業的成本,提升國貿及融資的效率;根據英國政府估計,未來十年,該法將可為英國經濟創造11.4億英鎊的淨效益(net benefit),同時每年可減少10%以上的碳排放量,有助於落實ESG。更重要的是,相對於紙本,貿易文件的數位化,可提升安全性和透明性。 根據該法第2條第2項規定,電子貿易文件必須是由「可信賴系統」(reliable system)所產生,所謂「可信賴系統」必須具備以下特徵: 1.能清楚識別文件,與其他副本加以區分; 2.能防止文件遭到未經授權的修改; 3.確保任何時點僅有一人能對該文件行使控制權; 4.允許能夠對該文件行使控制之人,能向他人「證明」其控制權; 5.確保電子貿易文件移轉後,使前手立即喪失控制權。 此外,第2條第5項列出在判斷一個系統是否可信賴時,可考量的7點因素,其中第5點指出可考量該系統是否經獨立機構定期稽核(包含稽核頻率和範圍),以及第6點為該系統是否經監管機關進行任何可信賴性的評估。 雖然該法基於技術中立(technological neutrality),並未明定何種技術符合「可信賴系統」的要求。然而,起草該法的法律委員會(Law Commission of England and Wales, LCEW)於2022年3月的草案報告中花了相當大的篇幅說明「分散式帳本」(Distributed Ledger Technology, DLT)的技術,並認為DLT在透明性、安全性、不可竄改等面向有較好的表現,因此指出這是「目前」產生可信賴電子貿易文件的重要技術之一。英國政府表示,承認電子貿易文件的法律效力後,國際貿易各環節的參與者可以透過如DLT等技術,更有效地追踪相關紀錄,進而提高國際貿易的安全性和合規性。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟執委會發布人工智慧創新政策套案

歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。

TOP