自2012年來,荷蘭政府鼓勵荷蘭科學研究機構(Netherlands Organization for Scientific Research, NWO) 隸屬教育文化科學部(Ministry of Education, Culture and Science, OCW)積極推動與9大重要領域(Top Sectors)與企業相關研究的合作,NWO同時是政策實施機構也是創新研發機構。OCW每年資助約275億歐元在重要領域,其中有超過100億歐元在協助公私協力機制 ( Public-Private Partnerships, PPP)。近年來,OCW增加編列給NWO的預算,2014年增加2千5百萬歐元;2015-2017年增加7千5百萬歐元;2018年預計增加1億歐元。PPP 參與者為研究機構(例如大學機構、公私立研究機構)及民間企業(國內國外企業皆可)。主要規範依據NWO-Framework for Public-Private Partnership,合作後以聯盟(consortium)形式運作,聯盟成員間可以契約個別約定合作內容,但相關權利義務仍須遵循NWO-Framework for Public-Private Partnership。關於既有智慧財產權之使用方式,聯盟成員間須另外約定非無償使用。為實現該聯盟之研發目的, NWO為主要出資者時,可成為該研發成果之所有人或共有人,待研發成果運用及收益可以獲得妥善安排時,得將研發成果轉讓予能將研發成果運用效益最大化之人。原則上,參與PPP的企業並不當然有優先權可將該研究成果運用於商業用途,除非參與企業出資額幾乎達到整個研發支出的百分之百,且已簽訂研發成果書面授權或轉讓契約後,始能將該研發成果運用於商業用途。
本文為「經濟部產業技術司科技專案成果」
面對能源轉型與全球淨零排放目標挑戰,英國於2025年5月15日通過《大英能源法》(Great British Energy Act 2025),法規授權內閣大臣(Secretary of State)指定一間由王室全資持有且依《2006年公司法》(Companies Act 2006)設立之股份有限公司為「大英能源公司」(Great British Energy, GBE)。 根據法規,GBE核心任務包括:推動潔淨能源發展、改善能源效率、降低碳排放、確保能源供應安全,並促進公平供應鏈(包含防止奴役與人口販運),GBE經營模式強調地方參與,須透過具社會效益之專案推動轉型工作。 為支持其營運,法規授權內閣大臣可對GBE提供各種形式的財務援助,包括補助、貸款、擔保、收購股份或資產等。此外,內閣大臣亦有權對GBE發布具拘束力之政策性指示(Directions),並需針對其營運擬定「策略優先事項」(strategic priorities),以成為GBE業務規劃之依據。惟上述優先事項不得涉蘇格蘭、威爾斯或北愛爾蘭議會專屬權限事項,除非經當地部門同意。 為確保公共資源使用之透明性,GBE必須每年向內閣大臣提交財報,內閣大臣再將財報提交國會。同時GBE須每五年接受一次獨立人士(independent person)的績效審查,獨立人士再將績效報告提交國會。法規亦要求GBE應持續檢討其業務對英國永續發展之影響,以確保符合國家長期發展方向。 本法適用於英格蘭、威爾斯、蘇格蘭及北愛爾蘭,並自2025年5月15日正式生效。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國FTC以廣告不實的理由對二款具有診斷功能的醫療app開罰美國FTC於2月23日對於兩款聲稱具有診斷能力的醫療app進行裁罰,理由是這兩款app宣傳不實資訊,故應予下架並裁處罰鍰。 Melapp與Mole Detective兩款app,均係付費app,售價大約在1.99至4.99美元不等,宣稱只要使用者從不同角度拍下自己身上的痣,app就能夠判斷這個痣屬於黑色素瘤(Melanoma,為一種罕見的皮膚癌類型,且惡性程度高)的機率,app將罹患黑色素瘤的風險區分為:高、中、低三級。但FTC認為業者的說法並沒有足夠的臨床依據加以證明,因此涉及廣告不實的行為。截至目前為止,Melapp與Mole Detective的開發業者都已經繳納罰鍰,但發行商L-Health拒絕繳納這項罰款,因此FTC的委員會在經過表決之後,決定在2015年2月23日向北伊利諾州地方法院提起訴訟,請求法院執行此項由FTC作成的裁罰。 具有診斷效果的app在美國其實開發已久,但在此案前,尚未見到行政機關對之積極的加以管制,此次由FTC出面對於廣告不實的部分加以裁罰,而非由主管藥物、醫材的FDA進行裁罰,或許與眾人的想像不同,但從FTC的這個行動,我們也發現美國政府已開始關切此類宣稱具有醫療診斷效果的app,醫療app未來的發展情勢將會如何,特別是本案中將被FTC起訴的L-Health會不會再另行提起其他法律爭訟,以確保其產品在市面上的合法性?毋寧是未來世界各地醫療app發展的重要參考資訊。