「歐盟網實整合藍圖與政策」

  歐盟在歐盟執委會的支持之下,致力於網實整合的發展,2015年6月歐盟提出以五項關鍵領域作為發展方向,包含交通、能源、健康、生產、以及基礎設施等。其中在智慧製造部分,主要為從大量生產到彈性、個別客製化生產,以及在生產以及產線自動化之下,增加市場競爭力。但針對此等發展,歐盟也提出未來將面臨幾點挑戰:
1.科學:網實整合系統應特別考量社會技術層面、使不同學科整合、結合相關系統理論,以及建構複式領域模型等
2.技術:由於不同的技術方法,因此應建立互通性平台系統、使自動化設計與執行更加成熟、減少資料隱私問題、整合安全性、建立系統方式處理無法確定之資訊等。
3.經濟:透過網實整合,從產品到服務,可建立新的商業模式。
4.教育:網實整合之應用需具備充分的條件,因此,可透過教育及訓練體制來增加對相關應用的認識。
5.法律:減少網實整合系統建立產生的障礙,消除法規解釋不清楚之部分,並且改善以確認整合系統應用正確性。
6.社會:網實整合應用對公共、產業以及政治等層面產生之改變與風險管理。

  網實整合在生產力4.0的發展當中,屬於最為核心之部分,目前歐盟所舉出可能產生的面向與問題,值得作為未來政策法制方向之參考。

本文為「經濟部產業技術司科技專案成果」

※ 「歐盟網實整合藍圖與政策」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7315&no=57&tp=5 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
韓國金融服務委員會發佈防止金融機構再度發生個人資料外洩之要求

  韓國於今年1月份爆發史上規模最大的個資外洩案,國民銀行執行長李健浩、國民銀行信用卡公司執行長沈在吾、樂天信用卡公司執行長朴相勳與農協銀行信用卡公司執行長孫京植等人,亦因此請辭以示負責。   為防止將來金融機構再次發生個人資料外洩等事件,韓國金融服務委員會(Financial Services Commission, FSC)與相關部會於3月份發佈一連串要求,以下為其基本原則 1. 金融機構將被要求在處理客戶的個人資料時的每一個階段,包括蒐集、保存、使用和銷毀客戶資料時,都必須擔負起更多的責任。 2. 確保金融消費者可主張關於其個人資料之相關權利,包括金融消費者可決定金融機構於何時如何使用其個人資料。 3. 提升金融機構對於其客戶之個人資料保護責任,包括提升首席資訊安全官(Chief Information Security Officer, CISO)獨立性與責任、加重金融機構於資訊安全違規時相關罰則。 4. 政府將採取更多措施以確保金融機構的網路安全。 5. 金融機構必須建立緊急應變機制,以確保面對未來可能的資料外洩事故時,可迅速有效的應對。   韓國政府於於3月底已對不需修改法律之部分開始執行,而涉及《使用和保護信用資料法》和《電子金融交易法》部分亦待議會修法。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國紐約州通過「防止非法侵入與加強電子資料安全法案」

  2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。   當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。

從交易成本概念談智慧財產資訊揭露的原則與效益

TOP