日本「新產業構造部會」提出2030年「新產業構造願景」

  日本政府認為IoT、Big Data以及人工智慧等破壞式創新技術的出現,目前世界正處於「第四次工業革命」之重大變革,而究竟IoT、Big Data及人工智慧的發展會對經濟、社會產生什麼程度的影響,公私部門有必要共同對應及討論共同戰略願景。因此,經濟產業省於2015年9月17日在「產業構造審議會」下設置「新產業構造部會」,以公私協力的方式共同策定未來產業願景。

該會議的具體檢討事項包括:
1. 具體變革狀況檢視:IoT、Big Data、人工智慧等技術,究竟會對產業構造、就業結構,以及經濟社會系統具體產生如何的改變。
2. 變革之影響:上述的變化可能創造機會,亦會產生風險。因此,於經濟社會層面要怎麼解決迎面而來的挑戰,是否有可能克服相關限制,亦為應關注的焦點。
3. 把握國際上的動向:上述的機會及風險,各國政府及企業等應對的戰略究竟為何。
4. 日本政府具體之特定處方籤:於上述背景下,日本政府及民間企業,應提出個別之戰略及對應方法。

  綜上所述,公私部門應協力做成包含時間進程的「指南針」,最後提出2030年「新產業構造願景(新産業構造ビジョン)」,對將來經濟社會系統進行預測。

本文為「經濟部產業技術司科技專案成果」

※ 日本「新產業構造部會」提出2030年「新產業構造願景」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7318&no=66&tp=1 (最後瀏覽日:2026/02/23)
引註此篇文章
你可能還會想看
英國數位、文化、媒體暨體育部發布資料道德與創新中心公眾諮詢

  英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。   在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。   諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。   本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開?   我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。

美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。   於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。   預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

日本內閣官房提出法案規範醫療個資去識別化業者,以促進研發利用

  日本內閣官房所屬之健康‧醫療戰略室於2017年3月, 向國會提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》(医療分野の研究開発に資するための匿名加工医療資訊に関する法律案)。「健康‧醫療戰略室」係於2013年2月成立,並於同年8月根據《健康‧醫療推進法》設置「健康‧醫療戰略推進本部」。該部於2017年3月10日提出《有助醫療領域研究開發之匿名加工醫療資訊法律案》,針對醫療資訊匿名加工業者進行規制,使他人可安心利用經過去識別化處理之資訊,以便促進健康、醫療方面之研究及產業發展,形成健康長壽社會。上開法案主要可分為兩個部份︰ 國家責任與義務︰政府應提出必要政策與制定基本方針。 匿名加工醫療資訊業者之認定︰該部份又可分為匿名加工醫療資訊業者(以下簡稱業者)之認定與醫療資訊處理。   針對上述第2點之認定,為確保資訊安全,政府應設置認定機構,以便確認業者符合一定基準,並具備足夠之匿名加工技術,可為醫療個資去識別化。此外,在醫療資訊處理方面,該法案則規定醫療機關可在事先告知本人,且本人未拒絕提供時,將醫療資訊提供給業者。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP