歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序:
1.簡化及採用彈性的政府採購程序
2.擴大適用電子招標;
3.改善中小企業參與招標程序;
4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。
因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。
其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。
前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。
本文為「經濟部產業技術司科技專案成果」
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
歐盟網路和資訊系統安全局(ENISA)歐盟網路與資訊安全局(ENISA)成立於2004年,目的在於確保歐盟內部網路與資訊安全保持在最高水準,同時也為執行2016年8月生效之歐盟網路和資訊系統安全指令(NIS- Directive),提高歐洲的網路安全準備,以防止並抵禦網路安全事件措施。計有84名工作人員,共同運作位於希臘的兩個辦公室:Heraklion (2005年成立之總部)辦公室;與雅典辦公室(2013年成立),以提高該機構的運作效率。 ENISA在NIS指令的執行中扮演重要的角色,任務包括支援歐盟機構、會員國國與產業界,快速對網路威脅與資訊安全問題做出反應。它也被要求在執行任務中協助各國間成立的合作小組。此外,更透過指令要求ENISA協助成員國與執委會,提供他的專業意見和建議。 ENISA戰略有五個面向: •提供關鍵網路設施和資訊安全問題之資訊和專業知識。 •制定和執行歐盟網路政策。 •建立歐盟間跨國支援能力。 •培育網路與資訊安全社群的網路演習、協調與支援。 •促進各國間的合作關係。 由於ENISA在建立之後網路發展情勢有顯著的演變,其任務和目標應該因應新發展做出調整,故歐盟執委會也在2017年1月開始重新審視其設立之法律依據以應對新情勢發展。
日本內閣閣議決定2021年最新3年期網路安全戰略日本內閣於2021年9月28日閣議決定最新3年期《網路安全戰略》(サイバーセキュリティ戦略)。本戰略係根據網路安全基本法(サイバーセキュリティ基本法),針對日本應實施之網路安全措施進行中長期規劃。日本將從「以數位改革為基礎,推動數位轉型與網路安全」、「在網路空間朝向公共空間化與相互連繫發展下,縱觀全體以確保安全安心」、「加強風險管理措施」三大方向,推動網路安全措施。本戰略重點措施包括: 提升經濟社會活力,並推動數位轉型與網路安全:為達成數位改革,日本經濟社會須完成數位轉型改革。而在推動經濟社會數位化過程中,應將網路安全納入政策推動之考量。 實現國民得安全安心生活之數位社會:所有組織應確保完成任務,並加強風險管理措施。而數位廳將揭示並推動網路安全基本方針,以使政府提供網路安全環境保護國民與社會。 促進國際社會和平安定,並保障日本安全:為確保全球規模「自由、公正且安全之網路空間」,日本須制定展現該理念之國際規範,並加強國際合作。 推動橫向措施:在橫向措施方面,將進行中長期規劃,推動實踐性研究開發,並促進網路安全人才培育。此外,政府亦須與民間共同合作進行推廣宣傳,以強化國民對網路安全意識。
英國衛生部發布基因檢測與保險自律行為準則英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。 準則中列出八項承諾,此八項承諾為ABI代表其成員議定: 承諾一:保險業者(Insurers)會公平對待要保人(applicants)。保險業者不會要求或迫使任何要保人進行預測性或診斷性基因檢測;若要保人已進行預測性基因檢測,保險業者亦不會對其作出差別待遇,除非有如下之情況。 承諾二:列入附錄一之疾病類型並超過以下金額之保單,保險業者始得要求要保人提供預測性基因檢測之結果: 人壽保險-500,000英鎊 /人。 重大疾病險-300,000英鎊 /人。 收入保障險-30,000英鎊 /年。 目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。 承諾三:保險業者不會要求要保人提供: 要保人或被保險人於承保期間所進行之預測性基因檢測結果。 非為要保人或被保險人本人(如要保人或被保險人血親)之預測性基因檢測結果。 於科學研究背景下獲得之要保人或被保險人預測性基因檢測結果。 承諾四:若保險業者基於承諾二之規定要求要保人提供預測性基因檢測結果,亦不會針對該結果制定過於苛刻(disproportionate)的條款或條件。 承諾五:保險業者須於要保人簽約前提供明確之訊息,以說明: 根據本準則,要保人在何種情況下必須或無須提供相關預測性基因檢測結果。 若要保人自願提供對其有利的預測性基因檢測結果,保險決策將如何被影響。 承諾六:若要保人基於意外或自願向保險業者提供預測性基因檢測結果,保險業者可考量要保人之利益調整保單內容;若檢測結果對要保人不利,除非符合承諾二之情形,否則保險業者將忽略該檢測結果。 承諾七:販售人壽保險、重大疾病或收入保障保險之保險業者將: 每年向ABI報告其遵守本準則之情況。 根據本準則問答部分之詳細資訊,建立投訴程序(complaints procedure)。 每年向ABI報告與本準則運作上相關之投訴情形。 承諾八:販售人壽保險、重大疾病或收入保障保險之保險業者將指定至少一名經培訓之基因核保人(Nominate Genetics Underwriter, NGU),負責與遺傳資訊(genetic information)及遵守本準則相關之事項,且NGU之人數應與業務規模成比例。