歐盟為推動歐洲單一市場,在2014年2月26日通過三項新的政府採購指令,包括「一般政府採購指令」、「公用事業政府採購指令」、「特許採購指令」,其修正宗旨主要在於從下列四個改革方向改善採購招標程序:
1.簡化及採用彈性的政府採購程序
2.擴大適用電子招標;
3.改善中小企業參與招標程序;
4.於採購招標程序中納入策略性目的之考量,以實現「歐洲2020策略(European Strategy 2020)」之創新目標。
因此一般政府採購指令第26條明訂,要求會員國應提供除原有之公開招標(open procedure,政府採購指令第27條)、限制性招標(restricted procedure,政府採購指令第28條)程序外,應另外提供創新夥伴(innovation partnerships,政府採購指令第29條)、競爭談判(competitive procedure with negotiation,政府採購指令第30條)及競爭對話(competitive dialogue,政府採購指令第31條)三種程序。
其中最重要者,在於將政府採購視為其達成創新政策之政策工具,在招標程序中推動所謂的創新採購(Public Procurement for Innovation, PPI)及商業化前採購(Pre-commercial procurement, PCP)。
前者係指創新解決方案幾乎或已經少量上市,不需要再投入資源進行新的研發(R&D)工作。而後者則針對所需要改善的技術需求,還沒有接近上巿的解決方案,需要再投入資源進行新的研發。採用競爭方法及去風險,經由一步一步的方案設計、原型設計、開發及首次產品測試來比較各替代方案的優缺點。
本文為「經濟部產業技術司科技專案成果」
所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。
美國聯邦上訴法院維持地方法院之原判,判定暢銷藥物Plavix 所基於的關鍵專利為有效繼美國紐約南區地方法院於2007年6月判定暢銷藥物Plavix所基於的專利為有效後,美國聯邦上訴法院於2008年12月再次認定Plavix之專利為有效。此判決有助於阻止Plavix學名藥進入美國市場直至該專利於2011年到期。 Plavix為一降低血液黏稠度之藥物,乃Bristol-Myers Squibb Co. 公司最銷售之產品及Sanofi-Aventis公司第二銷售之產品。加拿大Apotex公司宣稱Plavix之專利為無效,於2006年開始在美國販售Plavix 之學名藥。Bristol-Myers Squibb 與Sanofi-Aventis於贏得訴訟後表示將要求Apotex Inc.支付於販售學名藥期間對兩家藥商所造成的損失。 澳美國聯邦上訴法院法官表示地方法院已徹底的討論Apotex 所提出的專利無效論點,否決Apotex所提出的該專利並未包含新發明及Sanofi-Aventis之科學家使用已知研究方法及已知化合物製成Plavix 之主要組成物。上訴法院法官表示於判斷非顯而易見上,使用「後見之明」(hindsight)是不適合的。 針對此判決,Apotex公司表示他們認為上訴法院之決定為錯誤的並將持續努力尋求於美國銷售有品質的且一般大眾負擔得起的Plavix 學名藥。
日本智慧財產推進計畫2015分析(中)日本智慧財產推進計畫2015分析(中) 資策會科技法律研究所 104年10月02日 日本智慧財產戰略本部於今年6月19日所公布「智慧財產推進計畫2015」[1],係以智慧財產的創造、保護、活用及三者間的有效連接作為宗旨,並以少子高齡化與地方經濟衰退、智財糾紛處理機制的使用狀況和便利性、以及內容產業海外拓展的潛力及對智財戰略之重要性為背景,提出三項核心議題並分別剖析各項議題其現狀課題及主管部會應努力之方向,其中第二項議題「活化智財紛爭處理機制」之內容如下: 一、活化智財紛爭處理機制 (一)現狀與課題 1. 證據收集未見確實 在訴訟中,為能作成適切的裁判,原告、被告兩側需提出充分的證據,惟專利侵權訴訟中,多數情況下證據是為被告所掌握,權利人主張侵權之立證較為困難,就此日本認為應就以下三點檢討證據收集程序的機能:在訴訟開始的階段,確保爭點整理之程序充分發揮效用;確保「文書提出命令」作為證明被告有侵害事實有力手段之一,能充分發揮效用;作為證據收集的前提,確保證據保全制度能充分發揮效用。 2.權利安定性不足 從權利賦予乃至於紛爭處理的過程中,專利權等智財權之安定性亦相當重要。日本於2004年針對專利侵權訴訟,於專利法新增第104條之3[2],導入「專利無效抗辯」之制度,其後雖然有意見認為應廢止專利無效抗辯制度,但整體而言因無效抗辯制度的導入,確實使專利無效訴訟(無効審判)審理遲緩的狀況明顯獲得改善。而由於2015年日本再度導入專利異議制度(異議申立制度)[3],因此無論就權利者及疑似侵權者之間的平衡,或是產業政策上就專利權進步性要件的判斷等,本年度的推進計畫中均指出有就本條之內容再作檢討之必要。 3.損害認定額偏定 在損害賠償的額度方面,雖然在歷年來多次專利法之修正後已經獲得一定程度的改善,但普遍看法仍認為訴訟實務上法院所認定的侵權損害賠償數額,和商業實態上所造成的影響及需求相比仍是顯然偏低。另日本為求簡化便利損害賠償額的舉證難度,雖已於1998年修正專利法第102條[4]之規定,但於司法實務上並未能充分運用,加以民法上對不法行為之賠償側重實際上造成之損害,而未能從研究開發投資所得之專利權受損之角度思考,造成日本在專利權等智財糾紛中損害賠償額普遍偏低,此一問題仍有待解決。 4.中小企業專利權人不易勝訴 根據日本知的財產戰略事務局之統計,日本專利侵權訴訟中有約六成為中小企業提起,但扣除和解之部分單以終局判決而言,中小企業的原告勝訴率在二成以下,其中對大企業的勝訴率更不到一成,探究其原因,日本認為除了中小企業與專利、法律專業人員間合作程度有所不足外,在權利取得的階段就未能針對未來權利行使、保護充分進行戰略性規劃也可能是問題所在,故應對中小企業的權利取得、行使及訴訟進行上給予一定的支援。 (二)今後施政方向 日本為強化智財紛爭解決體系的機能,於2015年智財推進計畫中指出三個方向:首先是「強化智財紛爭處理體系的機能」,在權利人及侵害嫌疑人間地位平衡的前提下,對證據收集手續、損害賠償額、權利安定性和禁制令的核發等各方面為綜合性的檢討;其次是「促進智財紛爭處理體系的活用」,針對中小企業與大企業的往來過程中,就智財保護、紛爭預防、訴訟對應等面向提供進一步的支援,例如廣設據點提供充分的諮詢、提供具有訴訟實績的專家團隊、減輕進行訴訟之負擔等。此外針對「智財紛爭處理有關之資訊普及化」,為創造能因應經濟全球化之商業環境,除有必要將日本智財相關法令翻譯為英文提供予世界各國,尚應持續針對各國法院、專利局、及訴訟外紛爭解決等智財紛爭處理體系,與日本制度間的異同進行調查研究並公開揭露。 (三)小結 智慧財產權的保護和國家經濟發展息息相關,而僅有優質的專利申請程序及審查品質,仍無法達到健全智慧財產制度及其相關產業之目的,完善的智慧財產爭議解決程序,乃其中不可或缺之一環。有鑑於此,我國於2008年7月參考德、美、日等智財先進國家之作法成立智慧財產法院,目的即在於藉由專業的審判人員及程序,解決具備國際性及高等專業性的智慧財產案件,進而達到智慧財產案件審判的專業化、效率化。 而在智慧財產法院成立已滿七年的今日,學術界和產業界仍持續對提出各項檢討意見,例如法院於專利侵權訴訟中可自行就個案認定專利無效影響專利安定性、專利權人勝訴率偏低、損害賠償數額偏低、訴訟當事人審級利益保障不足等[5],此等議題和前揭日本智財推進計畫中所提出「活化智財紛爭處理機制」,當中的各項現況與課題同質性甚高,由此可知我國及日本目前在強化智財紛爭處理機制上,均面臨類似的問題有待克服。 二十一世紀為知識經濟時代,由於科技發展及商業型態的多元化,以知識產能為基礎所形成的專利、商標及著作權等智慧財產權,不僅 性質上與傳統的財產權有異,在權利保護上亦有不同的面貌。尤其高科技產業發達與否,攸關國家競爭力,而以鉅額投資研發取得高科技成果,常存有多種智慧財產權,必須藉由法律程序的保護,始能確保該產業在國際市場的競爭力。因此,就法律層面而言,必須建構妥適保護智慧財產權的制度程序,方足以維持國家在國際社會的競爭力[6]。我國後續或可參考前述日本作法,從事前紛爭預防和事後案件處理兩個面向同時著手,降低智財紛爭的發生率並提高解決效率和滿意度,逐步實現活化智財紛爭處理機制之目標。 [1]〈知的財産推進計画2015〉,知的財産戦略本部,http://www.kantei.go.jp/jp/singi/titeki2/kettei/chizaikeikaku20150619.pdf(最後瀏覽日:2015/08/14) [2] 特許法(昭和三十四年法律第百二十一号)第百四条の三(特許権者等の権利行使の制限):「特許権又は専用実施権の侵害に係る訴訟において、当該特許が特許無効審判により又は当該特許権の存続期間の延長登録が延長登録無効審判により無効にされるべきものと認められるときは、特許権者又は専用実施権者は、相手方に対しその権利を行使することができない。 2 前項の規定による攻撃又は防御の方法については、これが審理を不当に遅延させることを目的として提出されたものと認められるときは、裁判所は、申立てにより又は職権で、却下の決定をすることができる。 3 第百二十三条第二項の規定は、当該特許に係る発明について特許無効審判を請求することができる者以外の者が第一項の規定による攻撃又は防御の方法を提出することを妨げない。」 [3] 日本於2003年廢止原有之專利異議制度,2015年專利法修正時雖再度納入,但其內容及性質與舊法時之規定略有不同。 [4] 特許法第百二条第一項(損害の額の推定等):「特許権者又は専用実施権者が故意又は過失により自己の特許権又は専用実施権を侵害した者に対しその侵害により自己が受けた損害の賠償を請求する場合にお いて、その者がその侵害の行為を組成した物を譲渡したときは、その譲渡した物の数量(以下この項において「譲渡数量」という。)に、特許権者又は専用実施 権者がその侵害の行為がなければ販売することができた物の単位数量当たりの利益の額を乗じて得た額を、特許権者又は専用実施権者の実施の能力に応じた額を 超えない限度において、特許権者又は専用実施権者が受けた損害の額とすることができる。ただし、譲渡数量の全部又は一部に相当する数量を特許権者又は専用 実施権者が販売することができないとする事情があるときは、当該事情に相当する数量に応じた額を控除するものとする。」 [5] 李素華,〈智慧財產法院運作之觀察與檢討-以專利侵權訴訟為中心〉,《全國律師》,第18卷第10期,頁18以下。 [6] 同註5,頁42。
解析雲端運算有關認驗證機制與資安標準發展解析雲端運算有關認驗證機制與資安標準發展 科技法律研究所 2013年12月04日 壹、前言 2013上半年度報載「新北市成為全球首個雲端安全認證之政府機構」[1],新北市政府獲得國際組織雲端安全聯盟( Cloud Security Alliance, CSA )評定為全球第一個通過「雲端安全開放式認證架構」之政府機構,獲頒「2013雲端安全耀星獎」(2013 Cloud Security STAR Award),該獎項一向是頒發給在雲端運用與安全上具有重要貢獻及示範作用之國際企業,今年度除了頒發給旗下擁有年營業額高達1200億台幣「淘寶網」的阿里巴巴集團外,首度將獎項頒發給政府組織。究竟何謂雲端認證,其背景、精神與機制運作為何?本文以雲端運算相關資訊安全標準的推動為主題,並介紹幾個具有指標性的驗證機制,以使讀者能瞭解雲端運算環境中的資安議題及相關機制的運作。 資訊安全向來是雲端運算服務中最重要的議題之一,各國推展雲端運算產業之際,會以提出指引或指導原則方式作為參考基準,讓產業有相關的資訊安全依循標準。另一方面,相關的產業團體也會進行促成資訊安全標準形成的活動,直至資訊安全相關作法或基準的討論成熟之後,則可能研提至國際組織討論制定相關標準。 貳、雲端運算資訊安全之控制依循 雲端運算的資訊安全風險,可從政策與組織、技術與法律層面來觀察[2],涉及層面相當廣泛,包括雲端使用者實質控制能力的弱化、雲端服務資訊格式與平台未互通所導致的閉鎖效應(Lock-in)、以及雲端服務提供者內部控管不善…等,都是可能發生的實質資安問題 。 在雲端運算產業甫推動之初,各先進國以提出指引的方式,作為產業輔導的基礎,並強化使用者對雲端運算的基本認知,並以「分析雲端運算特色及特有風險」及「尋求適於雲端運算的資訊安全標準」為重心。 一、ENISA「資訊安全確保架構」[3] 歐盟網路與資訊安全機關(European Network and Information Security Agency, ENISA)於2009年提出「資訊安全確保架構」,以ISO 27001/2與BS25999標準、及最佳實務運作原則為參考基準,參考之依據主要是與雲端運算服務提供者及受委託第三方(Third party outsourcers)有關之控制項。其後也會再參考其他的標準如SP800-53,試圖提出更完善的資訊安全確保架構。 值得注意的是,其對於雲端服務提供者與使用者之間的法律上的責任分配(Division of Liability)有詳細說明:在資訊內容合法性部分,尤其是在資訊內容有無取得合法授權,應由載入或輸入資訊的使用者全權負責;而雲端服務提供者得依法律規定主張責任免除。而當法律課與保護特定資訊的義務時,例如個人資料保護相關規範,基本上應由使用者與服務提供者分別對其可得控制部分,進行適當的謹慎性調查(Due Diligence, DD)[4]。 雲端環境中服務提供者與使用者雙方得以實質掌握的資訊層,則決定了各自應負責的範圍與界限。 在IaaS(Infrastructure as a Service)模式中,就雲端環境中服務提供者與使用者雙方應負責之項目,服務提供者無從知悉在使用者虛擬實體(Virtual Instance)中運作的應用程式(Application)。應用程式、平台及在服務提供者基礎架構上的虛擬伺服器,概由使用者所完全主控,因此使用者必須負責保護所佈署的應用程式之安全性。實務上的情形則多由服務提供者協助或指導關於資訊安全保護的方式與步驟[5]。 在PaaS(Platform as a Service)模式中,通常由雲端服務提供者負責平台軟體層(Platform Software Stack)的資訊安全,相對而言,便使得使用者難以知悉其所採行的資訊安全措施。 在SaaS(Software as a Service)模式中,雲端服務提供者所能掌控的資訊層已包含至提供予使用者所使用的應用程式(Entire Suite of Application),因此該等應用程式之資訊安全通常由服務提供者所負責。此時,使用者應瞭解服務提供者提供哪些管理控制功能、存取權限,且該存取權限控制有無客製化的選項。 二、CSA「雲端資訊安全控制架構」[6] CSA於2010年提出「雲端資訊安全控制架構」(Cloud Controls Matrix, CCM),目的在於指導服務提供者關於資訊安全的基礎原則、同時讓使用者可以有評估服務提供者整體資訊安全風險的依循。此「雲端資訊安全控制架構」,係依循CSA另一份指引「雲端運算關鍵領域指引第二版」[7]中的十三個領域(Domain)而來,著重於雲端運算架構本身、雲端環境中之治理、雲端環境中之操作。另外CCM亦將其控制項與其他與特定產業相關的資訊安全要求加以對照,例如COBIT與PCI DSS等資訊安全標準[8]。在雲端運算之國際標準尚未正式出爐之前,CSA提出的CCM,十分完整而具備豐富的參考價值。 舉例而言,資訊治理(Data Governance)控制目標中,就資訊之委託關係(Stewardship),即要求應由雲端服務提供者來確認其委託的責任與形式。在回復力(Resiliency)控制目標中,要求服務提供者與使用者雙方皆應備置管理計畫(Management Program),應有與業務繼續性與災害復原相關的政策、方法與流程,以將損害發生所造成的危害控制在可接受的範圍內,且回復力管理計畫亦應使相關的組織知悉,以使能在事故發生時即時因應。 三、日本經產省「運用雲端服務之資訊安全管理指導原則」[9] 日本經濟產業省於2011年提出「運用雲端服務之資訊安全管理指導原則」,此指導原則之目的是期待藉由資訊安全管理以及資訊安全監督,來強化服務提供者與使用者間的信賴關係。本指導原則的適用範圍,主要是針對機關、組織內部核心資訊資產而委託由外部雲端服務提供者進行處理或管理之情形,其資訊安全的管理議題;其指導原則之依據是以JISQ27002(日本的國家標準)作為基礎,再就雲端運算的特性設想出最理想的資訊環境、責任配置等。 舉例而言,在JISQ27002中關於資訊備份(Backup)之規定,為資訊以及軟體(Software)應遵循ㄧ定的備份方針,並能定期取得與進行演練;意即備份之目的在於讓重要的資料與軟體,能在災害或設備故障發生之後確實復原,因此應有適當可資備份之設施,並應考量將備份措施與程度的明確化、備份範圍與頻率能符合組織對於業務繼續性的需求、且對於儲存備份資料之儲存媒體亦應有妥善的管理措施、並應定期實施演練以確認復原程序之有效與效率。對照於雲端運算環境,使用者應主動確認雲端環境中所處理之資訊、軟體或軟體設定其備份的必要性;而雲端服務提供者亦應提供使用者關於備份方法的相關訊息[10]。 参、針對雲端運算之認證與登錄機制 一、CSA雲端安全知識認證 CSA所推出的「雲端安全知識認證」(Certificate of Cloud Security Knowledge, CCSK),是全球第一張雲端安全知識認證,用以表示通過測驗的人員對於雲端運算具備特定領域的知識,並不代表該人員通過專業資格驗證(Accreditation);此認證不能用來代替其他與資訊安全稽核或治理領域的相關認證[11]。CSA與歐盟ENISA合作進行此認證機制的發展,因此認證主要的測試內容是依據CSA的「CSA雲端運算關鍵領域指引2.1版(英文版)」與ENISA「雲端運算優勢、風險與資訊安全建議」這兩份文件。此兩份文件採用較為概略的觀念指導方式,供讀者得以認知如何評估雲端運算可能產生的資訊安全風險,並採取可能的因應措施。 二、CSA雲端安全登錄機制 由CSA所推出的「雲端安全登錄」機制(CSA Security, Trust & Assurance Registry, STAR),設置一開放網站平台,採取鼓勵雲端服務提供者自主自願登錄的方式,就其提供雲端服務之資訊安全措施進行自我評估(Self Assessment),並宣示已遵循CSA的最佳實務(Best Practices);登錄的雲端服務提供者可透過下述兩種方式提出報告,以表示其遵循狀態。 (一)認知評價計畫(Consensus Assessments Initiative)[12]:此計畫以產業實務可接受的方式模擬使用者可能之提問,再由服務提供者針對這些模擬提問來回答(提問內容在IaaS、PaaS與SaaS服務模式中有所不同),藉此,由服務提供者完整揭示使用者所關心的資訊安全議題。 (二)雲端資訊安全控制架構(CCM):由服務提供者依循CCM的資訊安全控制項目及其指導,實踐相關的政策、措施或程序,再揭示其遵循報告。 資安事故的確實可能使政府機關蒙受莫大損失,美國南卡羅萊納州稅務局(South Carolina Department of Revenue)2012年發生駭客攻擊事件,州政府花費約2000萬美元收拾殘局,其中1200萬美元用來作為市民身份被竊後的信用活動監控,其他則用來發送被害通知、資安強化措施、及建立數位鑑識團隊、資安顧問。 另一方面,使用者也可以到此平台審閱服務提供者的資訊安全措施,促進使用者實施謹慎性調查(Due Diligence)的便利性並累積較好的採購經驗。 三、日本-安全・信頼性資訊開示認定制度 由日本一般財團法人多媒體振興協會(一般財団法人マルチメディア振興センター)所建置的資訊公開驗證制度[13](安全・信頼性に係る情報開示認定制度),提出一套有關服務提供者從事雲端服務應公開之資訊的標準,要求有意申請驗證的業者需依標準揭示特定項目資訊,並由認證機關審查其揭示資訊真偽與否,若審查結果通過,將發予「證書」與「驗證標章」。 此機制始於2008年,主要針對ASP與SaaS業者,至2012年8月已擴大實施至IaaS業者、PaaS業者與資料中心業者。 肆、雲端運算資訊安全國際標準之形成 現國際標準化組織(International Organization for Standardization, ISO)目前正研擬有關雲端運算領域的資訊安全標準。ISO/IEC 27017(草案)[14]係針對雲端運算之資訊安全要素的指導規範,而ISO/IEC 27018(草案)[15]則特別針對雲端運算的隱私議題,尤其是個人資料保護;兩者皆根基於ISO/IEC 27002的標準之上,再依據雲端運算的特色加入相應的控制目標(Control Objectives)。 [1]http://www.ntpc.gov.tw/web/News?command=showDetail&postId=277657 (最後瀏覽日:2013/11/20) [2]European Network and Information Security Agency [ENISA], Cloud Computing: Benefits, Risks and Recommendations for Information Security 53-59 (2009). [3]ENISA, Cloud Computing-Information Assurance Framework (2009), available at http://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-information-assurance-framework . [4]ENISA, Cloud Computing-Information Assurance Framework 7-8 (2009). [5]ENISA, Cloud Computing-Information Assurance Framework 10 (2009). [6]CSA, Cloud Controls Matrix (2011), https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [7]CSA, CSA Guidance For Critical Areas of Focus in Cloud Computing v2 (2009), available at https://cloudsecurityalliance.org/research/security-guidance/#_v2. (last visited Nov. 20, 2013). [8]https://cloudsecurityalliance.org/research/ccm/ (last visited Nov. 20, 2013). [9]日本経済産業省,クラウドサービスの利用のための情報セキュリティマネジメントガイドライン(2011),http://www.meti.go.jp/press/2011/04/20110401001/20110401001.html,(最後瀏覽日:2013/11/20)。 [10]日本経済産業省,〈クラウドサービスの利用のための情報セキュリティマネジメントガイドライン〉,頁36(2011)年。 [11]https://cloudsecurityalliance.org/education/ccsk/faq/(最後瀏覽日:2013/11/20)。 [12]https://cloudsecurityalliance.org/research/cai/ (最後瀏覽日:2013/11/20)。 [13]http://www.fmmc.or.jp/asp-nintei/index.html (最後瀏覽日:2013/11/20)。 [14]Information technology - Security techniques- Security in cloud computing (DRAFT), http://www.iso27001security.com/html/27017.html (last visited Nov. 20, 2013). [15]ISO/IEC 27018- Information technology -Security techniques -Code of practice for data protection, controls for public cloud computing services (DRAFT), http://www.iso27001security.com/html/27018.html (last visited Nov. 20, 2013).