何謂防禦型聯盟(Defensive Patent Aggregator)?其是否為NPE的重要類型?

  防禦型專利聯盟係為NPE之一種重要類型,主要以抵制NPE侵擾為出發點,防禦型聯盟儘可能搶先攻擊型如NPE者去進行專利的授權或購買,加入防禦型聯盟者則可付出比與NPE進行和解所支付費用較少的金錢,成員其會員以取得不被NPE侵擾的地位。

  NPE中屬於防禦型聯盟(Defensive Patent Aggregator)者,RPX(Rational Patent)之運作模式常可作為主要類型化參考對象之一。RPX為上市公司,其主要核心業務在於「緩和其會員被訴之可能」。RPX取得專利之資金主要來自會員年費,而各會員可取得RPX所有專利之「授權」,而收費結構不當然等於獲取專利之成本之分攤,以使會員已低於一般訴訟和解、或取得爭議專利等更為低的代價來防止被訴。在此同時,RPX本身也不會對他人起訴。

  RPX所提供的防禦性聯盟策略,先行於其他NPE取得前那些潛在「危險性」的目標專利,甚至有可能向NPE取得專利,必要時,直接於訴訟仍在進行之時去取得專利。而在防禦以外,如其他非會員向會員起訴,會員也可以以RPX所有之專利進行反訴。

  目前RPX會費在6萬5千美元至6900萬美元之間,依照會員本身營運規模之不同定之,但「會費等級」(rate card)會自加入之初鎖定不再更動,實際每年繳交費用則可能依據RPX所取得的所有專利價值增加而上昇 。而除此主要運作模式外,RPX也運用其廣泛取得專利之經驗,提供個別企業服務服務,得以較低的躉售價格取得專利(Syndicated Acquisitions),反之企業自行購買專利可能需要付出較高的「零售」價格

  RPX的運作模式對於加入成為其「會員」者有兩項優勢:第一,減少「專利蟑螂」可取得的專利數量;其次,因可理解為全體會員合力進行防禦型專利取得故能減低這些專利取得之成本。

本文為「經濟部產業技術司科技專案成果」

※ 何謂防禦型聯盟(Defensive Patent Aggregator)?其是否為NPE的重要類型?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7320&no=57&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
歐盟個人資料保護委員會提出關於資料主體接近使用其個人資料權利之指引

  歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)第15條為「資料主體之接近使用權(Right of access)」,其第1項規定「資料主體有權向控管者確認其個人資料是否正被處理」,資料主體並得知悉其個資處理之目的、所涉及之類型等事項。該條係為使資料主體在獲得充分、透明且容易接近之資訊,使其得更輕易的行使如資料刪除或更正等權利。   因條文在文字上具抽象性,就具體內涵仍須有一定基準,故歐盟個人資料保護委員會(European Data Protection Board, EDPB)於2022年1月18日,針對GDPR中之接近使用權提出指引(Guidelines 01/2022 on data subject rights - Right of access),闡明在不同的情況中,資料主體應如何向資料控管者(Data Controller)主張接近使用權,並且說明資料控管者針對此項權利之義務內涵。   就具體內容,該指引包含:接近使用權之範圍、資料控管者應向資料主體提供之資訊內容、資料主體請求資訊之格式、資料控管者應如何提供資訊、GDPR第12條第5項所稱「資料主體之請求明顯無理由或過度者」之概念為何。指引並製作流程圖,以便利資料主體輕易的了解向資料控管者主張權利之步驟。   而對於資料控管者,指引亦說明其應如何解釋與評估資料主體之請求、應如何回覆特定請求、限制接近使用權之例子。該指引旨在從各方面分析接近使用權,經由舉例與設想特殊情形,以求為該權利提供更精確之指導。

美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護

  隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。   在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。   該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。

歐盟出資贊助開放原始碼研究

  歐盟決定斥資 66 萬歐元的經費研究全球的開放原始碼軟體與標準。   歐盟在為期兩年的 FLOSSWorld 專案中,首度贊助的國際性開放原始碼軟體研發與政策發展計畫,先前的 FLOSS 專案主要只著重在歐洲的開放原始碼部分。 FLOSS 即為自由 / 開放原始碼軟體的縮寫 (free/libre/open source) ,藉由本專案,歐盟希望能夠強化歐洲在自由軟體領域的領導力,與增加國際合作夥伴。   FLOSSWorld 召集人 Rishab Aiyer Ghosh 向對外表示,歐盟通常是不贊助國際性專案的。而此次計劃共區分五大區域,而合作的國家包括中國 ( 東亞 ) 、印度與馬來西亞 ( 南亞 ) 、非洲 ( 南非 ) 、東南歐 ( 保加利亞與克羅埃西亞 ) 、中南美洲 ( 阿根廷與巴西 ) 。   研究將專注在三大領域:開放原始碼對於技能發展的影響,以及對經濟與新增職缺的影響;軟體開發的區域差異性;政府與公家單位對使用開放原始碼的態度。 Ghosh 指出 FLOSSWorld 的目標在增加國際層次的合作,增加對其他國家對於開放原始碼的使用與影響的了解程度。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。   德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。   例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

TOP