問題在號碼?(上)---談網路電話服務(VoIP)號碼核配與網路互連管制問題

刊登期別
2004年08月
 

相關附件
※ 問題在號碼?(上)---談網路電話服務(VoIP)號碼核配與網路互連管制問題, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=737&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
日本公布設立AI安全研究所與著手訂定AI安全性評鑑標準

日本於2023年12月1日舉辦G7數位技術委員會(G7デジタル・技術大臣会合),由日本數位廳、總務省、經濟產業省共同會晤G7會員國代表,基於人工智慧(Artificial Intelligence,下稱AI)可能帶給全球創造性、革命性的轉變,同時也可能伴隨侵害著作權與擴散假訊息的風險,尤其是生成式AI可能對經濟、社會影響甚鉅,因此針對如何妥善使用AI技術,G7全體會員國共同訂定《廣島AI進程》(広島AIプロセス)文件,其聲明內容簡述如下: 1.訂定涵蓋《廣島AI進程》之政策框架(Framework) 2.訂定涵蓋AI設計、系統開發、規劃、提供與使用等所有與AI有關人員,(All AI actors, when and as applicable, and appropriate, to cover the design, development, deployment, provision and use of advanced AI systems)適用之《廣島AI進程》國際標準(Principle) 3.針對開發高階AI系統之組織,訂定可適用之國際行為準則(Code of Conduct) 為此,日本內閣府於2024年2月14日公布,於經濟產業省政策執行機關—獨立行政法人資訊處理推動機構(独立行政法人情報処理推進機構,下稱IPA)轄下設立日本AI安全研究所(Japan AI Safety Institute,下稱AISI),作為今後研擬AI安全性評鑑標準(據以特定或減少AI整體風險)與推動方式之專責機構,以實現安心、安全以及可信賴之AI為目標。AISI所職掌的業務範圍如下: 1.進行AI安全性評鑑之相關調查 2.研擬AI相關標準 3.研擬安全性評鑑標準與實施方式 4.研擬與各國AI專責機關進行國際合作,例如:美國AI安全研究所(U.S. Artificial Intelligence Safety Institute, USAISI) 另一方面,IPA將以內部人才招聘作為AISI成員之任用方式,預計組成約數十人規模的團隊。日本以與G7會員國共識為基礎,採專責機關—AISI進行研究與規劃,並推動日後擬定AI相關使用規範與安全性評鑑標準,據以實現AI應用安全之目標。我國對於AI技術之應用領域,未來應如何訂定使用安全規範,將涉及專業性與技術性事項之整體性規劃,日本因應AI課題而採行的做法值得我國未來持續關注。

歐盟航空安全局發布全球首件《最大起飛重量不逾六百公斤之無人機系統噪音量測指南》,有助於環境保護與防止噪音危害

歐盟航空安全局(European Union Aviation Safety Agency, EASA)於2022年10月13日發布全球首件「最大起飛重量不逾六百公斤之無人機系統噪音量測指南」(Guidelines on Noise Measurement of Unmanned Aircraft Systems Lighter than 600 kg Operating in the Specific Category),適用於各式各樣的無人機設計,包括多旋翼機(multicopters)、固定翼航空器(fixed-wing aircraft)、直升機與動力起降航空器(powered-lift aircraft)等。 該指南旨在提供低度與中度風險(Low and Medium Risk)特定類別無人機運行時,具一致性的噪音量測程序與方法。該方法係考量實際層面與心理聲學(psychoacoustics),即有關人類對於無人機聲音的感知,設計為提供可重複且準確量測噪音,可量測最大起飛重量(Maximum Take-Off Weight, MTOM)小於600公斤的無人機,以落實歐盟環境保護的高度水準,並防止噪音對人體健康的重大影響。而所謂特定類別(specific category)包括包裹遞送、電力巡檢、鳥類管制(bird control)、測繪服務(mapping services)、空中監視(aerial surveillance)等活動。 此份指南雖不具強制性,亦非無人機認證規範,然而噪音是許多歐洲民眾所關注的問題,各國航空主管機關仍可以該指南為基準要求營運商,使之在自然公園或人口稠密區域等敏感環境運行無人機時可降低噪音。同時,無人機製造商、營運商或噪音量測組織,亦可依據該指南確立與特定設計及操作相關的噪音水準。此外,可將由此而生的噪音水準報告提供給EASA,以建立可供營運商與主管機關使用的線上公眾資料庫(online public repository)。

歐盟法院於11月28日對Intel v CPM案依英國上訴法院初審判決闡釋著名商標侵害之認定方式

  歐盟法院(ECJ- the Court of Justice of the European Communities)於11月28日針對Intel v CPM一案宣告,對於著名商標侵害的認定參考英國上訴法院(the Court of Appeal-England and Wales)的初審裁定「著名商標持有人得中止近似商標使用於完全非類似的產品或服務上,只要能舉證近似商標之使用造成對著名商標持有人的侵害並有實質的經濟影響」。     本案原告為Intel Corporation Inc. 註冊「Intel」為英國商標,指定使用於第9類電子商品、第16類文具商品、第38類通訊服務、及第42類電腦軟硬體設計服務,其中並在電腦微處理器及軟體等電子產品上更為全球知名的商標;CPM united Kingdom Ltd. 註冊「INTELMARK」為英國商標,指定使用於第35類的行銷及遠距行銷等廣告服務,Intel主張CPM使用INTELMARK為商標將有致侵害及淡化Intel商標的使用,並產生不正利益。惟英國商標局(Trade Mark Registry Hearing Officer)駁回Intel之申請案,且英國上訴法院初審判決維持原判,並向歐盟法院提出著名商標認定標準。     歐盟法院此次對著名商標的認定,將使著名商標持有人以後如果要保障其商標名稱不被稀釋,必須提出下列證明:1. 前商標(即著名商標)與後商標(近似商標)間必須有一定的關聯性;2. 後商標會使一般消費者產生對前商標的聯想;3.前商標與後商標所註冊的商品間並不一定要類似;4.後商標的使用造成不正利益或侵害前商標持有人的商譽。     本案將待英國上訴法院判決宣判後確定。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP