歐洲各國司法部長於1月16日與歐盟司法與內政委員會委員Franco Frattini進行會商,包括德國、英國、希臘、芬蘭、西班牙以及法國之司法部長皆同意支持建立全歐一致之共同規範以限制對孩童販售暴力遊戲軟體,並將據此檢視各國電腦軟體相關法制。 Franco Frattini委員過去基於「兒童保護應不分國界」之理念,曾建議建構以歐盟為範圍的標識規範,並鼓勵以兒童為銷售對象之遊戲業者建立自律規約,惟歐盟最後決議應交由各國政府自行規範。而Franco Frattini委員此次提案受到本屆歐盟輪值主席國-德國-司法部長Brigitte Zypries的支持,並指示相關規範建構之第一步,即是出版遊戲軟體分級摘要供家長參考,此摘要將很快於歐盟網站上公布。Zypries認為關於暴力遊戲的限制,歐盟應與國際進行合作溝通,由其針對美國與日本;Frattini則期望在歐盟27個會員國建構專門針對此類遊戲的標識規範,至於其他種類之遊戲則仍由各國政府自行管理。 目前國際間針對暴力遊戲限制,多數國家仍採取提供遊戲分級或相關指導守則之方式,於歐洲,僅英國與德國特別訂定法律加以規範,尤其在英國,遊戲軟體內容若具有對人類或動物之寫實暴力場景,或包含人類的性愛行為者,必須送交英國電影分級委員會(British Board of Film Classification,簡稱BBFC)審查。而美國已有部分州議會通過限制對未成年人販售遊戲的法律,但幾乎皆被「違反美國憲法修正條文第1條-言論自由保障」之理由成功推翻。
日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
歐盟預計修法促進新穎性食品發展歐盟為了要加速新穎性食品之上市、促進食品科技之發展,並加強複製動物乳肉品、奈米食品或外來等新穎性食品之上市查驗,今(2008)年初歐盟執委會(Commission)即針對1997年新穎性食品規則(Regulation (EC) No 258/97 concerning novel foods and novel food ingredients)提出修正建議案,而現行規則最大爭議,則在於其未能涵蓋1997年以後才研發出的食品以及在歐盟未大量食用但在國外已廣泛食用等兩類食品。 新規則草案的修正重點,將放在:(1)排除已受其他專門法規管轄之食品,包含生技產品(即基因改造食品、GMO)、食品添加物、調味料、酵素、維他命與礦物質(類似我國健康食品、保健食品)等。(2)建立單一、簡化的中央查驗制度(centralised authorisation system),由歐盟食品安全署(EFSA)進行安全評估後由執委會發布許可。(3)明定適用範圍包含運用非傳統育種技術所得之植物來源食品(food of plant or animal origin when to the plant and animal is applied a non-traditional breeding technique not used before 15 May 1997),亦即含複製動物食品,以及運用新生產製程所得之食品(food to which is applied a new production process, not used before 15 May 1997),即涵蓋運用奈米科技所製造奈米食品。此外,新規則亦提供研發新科學證據及資料並申請獲准的公司,享有5年的資料專屬保護(data protection,即data exclusivity),用以促食品及食品生產技術之研發。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。