日前,英國英格蘭與威爾斯上訴法院在沒有判決先例或法律明文下,於2016年07月06日作出法院得對網路服務業者發出封鎖商標侵權網站強制令的判決,該判決維持本案高等法院的見解。
在卡蒂亞國際集團與英國天空廣播集團與開放權利團體案中,法院要求前開網路服務提供業者,對特定就侵害商標權人商品進行廣告與販售的網站進行封鎖。
本案高等法院認為,對於1988年著作權、設計和專利法第97A條而言,儘管缺乏實體法依據,但藉由本條解釋而探求網路服務業者對於商標權人的網路侵權保護是必要的。
本案業者上訴指出,如法院依據第97A條發佈封鎖網站的強制令,必須先確定:網路服務業者是服務提供者、目標網站的用戶或是業者侵犯著作權、目標網站的用戶或是業者利用網路服務業者提供的服務侵犯著作權以及網路服務業者明知。然而,業者指出,他們是完全出於善意、中立且未違法令,法院不能在缺乏判決先例與證據的情況下,逕自做出封鎖網站的決定,但上訴法院認為比較利益衡量後,強制網路服務業者封鎖特定侵權網站是合理適當的。
先不論強制封鎖網站的命令是否侵害言論自由,甚至有連合法內容也一併封鎖的風險。若該見解成為判決標準,預料將加重英國網路服務業者監管責任與營運成本,相關影響已在智財相關社群中被熱烈討論。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國FTC於2月23日對於兩款聲稱具有診斷能力的醫療app進行裁罰,理由是這兩款app宣傳不實資訊,故應予下架並裁處罰鍰。 Melapp與Mole Detective兩款app,均係付費app,售價大約在1.99至4.99美元不等,宣稱只要使用者從不同角度拍下自己身上的痣,app就能夠判斷這個痣屬於黑色素瘤(Melanoma,為一種罕見的皮膚癌類型,且惡性程度高)的機率,app將罹患黑色素瘤的風險區分為:高、中、低三級。但FTC認為業者的說法並沒有足夠的臨床依據加以證明,因此涉及廣告不實的行為。截至目前為止,Melapp與Mole Detective的開發業者都已經繳納罰鍰,但發行商L-Health拒絕繳納這項罰款,因此FTC的委員會在經過表決之後,決定在2015年2月23日向北伊利諾州地方法院提起訴訟,請求法院執行此項由FTC作成的裁罰。 具有診斷效果的app在美國其實開發已久,但在此案前,尚未見到行政機關對之積極的加以管制,此次由FTC出面對於廣告不實的部分加以裁罰,而非由主管藥物、醫材的FDA進行裁罰,或許與眾人的想像不同,但從FTC的這個行動,我們也發現美國政府已開始關切此類宣稱具有醫療診斷效果的app,醫療app未來的發展情勢將會如何,特別是本案中將被FTC起訴的L-Health會不會再另行提起其他法律爭訟,以確保其產品在市面上的合法性?毋寧是未來世界各地醫療app發展的重要參考資訊。
美國最高法院判決診斷方法不具可專利性美國最高法院近日在Mayo Collaborative Services與Prometheus Laboratories一案中判決2項與免疫疾病有關的診斷方法專利無效,業界擔憂該判決將對處於新興發展階段的個人化醫療領域的研發投入與創新有著負面影響。 本案源於Prometheus所擁有的在不同劑量下thiopurine藥物代謝情況的診斷方法專利(由於病患的藥物代謝率不同,因此醫生在判斷特定病患的藥物劑量高低有相當的困難度),Mayo購買使用Prometheus的診斷方法後, 2004年Mayo開始對外販售自己的診斷方法。Prometheus主張Mayo侵害其專利,聯邦地方法院認為該專利建構於自然法則與現象上,因此不具可專利性,但聯邦巡迴上訴法院則有不同的看法,本案因此一路爭執至最高法院。 對於自然法則、現象以及抽象的概念,基於其作為科技發展的基礎工具,為避免妨礙創新發展,一直以來法院都持不具可專利性的看法。在相關的前案中,唯有在自然法則之外,包含創新概念的元素,才能超越自然法則本身而成為專利。本案中最高法院表示,本案專利方法步驟,不符合前述基於創新概念而授與專利的條件,且該方法步驟為該領域人所熟知、常用,授與專利將導致既有的自然法則被不當的受限而影響後續進一步的發現。 評論者表示儘管該判決並未提供一個清楚的判斷標準,但並不因此讓下級法院對這類的個人化醫療專利全數否決。然本案對於可專利性客體的判斷,影響將不僅止於生命科學,進而包括所有涉及可專利性客體的軟體、商業方法類型專利,後續影響值得持續關注。
Google預期推出智慧金融卡科技巨頭Google目前預計依循Apple Card模式,與花旗銀行、Stanford Federal Credit Union合作開發「Google Card」智慧簽帳金融卡。 雖目前尚未正式發行,但根據TechCrunch報導指出,使用者在連結銀行帳戶後,可向Google Card轉入資金或從卡中轉出資金,消費時會直接從個人連結的銀行帳戶扣款。此外,Google Card將連接到具有新功能的Google應用程式,讓使用者得以輕鬆監管消費狀況、確認餘額或鎖定帳戶。 這對於Google來說,為非常重要的一步,因Google本身掌握巨量資料,因此透過Google Card,Google有機會獲得新的收入和消費數據,其將向消費店家酌收交易手續費,再與銀行拆分;此外,Google Card的隱私權政策中,可能利用用戶消費的交易數據,以改善投放商品廣告的衡量標準,若Google可以其金融商品推動銷售,將使更多的品牌願意購買Google廣告。 長期影響來看,Google Card可為Google提供銀行業務,包括股票經紀業務、財務建議或AI會計、保險、借貸諮詢,而因Google掌握大量數據,將可能使Google比傳統金融機構更能準確的管理金融風險,透過應用程式、廣告、搜尋和Android系統,Google和消費者之間建立深厚關聯,為推廣和提供金融服務建立一個充足的背景。隨著武漢肺炎疫情的漸緩,高利潤的金融商品也將幫助 Google 開發有效的收入機會並藉此提升股價。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。