瑞典最高法院關於維基所設立公共藝術品之照片資料庫之判決

  瑞典最高法院(Högsta domstolen)於2016/04/04 針對維基基金會(Wikimedia Sverige)與瑞典照片藝術著作權團體(Bildkonst Upphovsrätt i Sverige-BUS)之訴訟案,認定維基基金會無權經由網路提供公共藝術品資料庫(Swedish WikiMedia Art Map)予公眾使用。


  本案由瑞典視覺藝術著作權團體於2016/06在瑞典斯德哥爾摩地方法院向維基基金會以侵犯藝術家(konstnärer)對其作品在線上之公眾提供權而提起訴訟。此案爭點在維基未得藝術家之同意前,維基是否可免費提供公共藝術品資料庫供大眾接近使用。因本件訴訟涉及瑞典著作權法24條第1項公共藝術品之轉載重製(24 § Konstverk får avbildas)。瑞典斯德哥爾摩地方法院依民事訴訟法第56章第13條向瑞典最高法院針對此爭議提出判決前置問題(beslut av tingsrätten om hänskjutande enligt 56 kap. 13 § rättegångsbalken)。
 

  瑞典最高法院認為觀光客固然可以對置於公共場所之雕塑品等公共藝術品為攝影,但資料庫是否可無限制使用這些照片則是另一問題。公共藝術品照片資料庫被推定有一定某種程度之商業價值,且不論其是否具商業目的,最高法院認定藝術家有權利去主張此價值。


  維基基金會認為此判決弱化表現自由中之基本元素之視覺自由(the freedom of panorama)。需強調的是,此決定只是針對公共藝術品資料庫之運用,並不影響私人上傳公共藝術品照片至社群媒體之權利。
 

本文同步刊登於TIPS網站(https://www.tips.org.tw
 

相關連結
※ 瑞典最高法院關於維基所設立公共藝術品之照片資料庫之判決, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7542&no=57&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
美國運輸部公布自駕車3.0政策文件

  美國運輸部(Department of Transportation)於2018年10月4日公布「自駕車3.0政策文件」(Preparing for the Future of Transportation: Automated Vehicles 3.0)」,提出聯邦政府六項自駕車策略原則: 安全優先:運輸部將致力於確認可能之安全風險,並促進自駕車可帶來之益處,並加強公眾信心。 技術中立:運輸部將會依彈性且技術中立之策略,促進自駕車競爭與創新。 法令的與時俱進:運輸部將會檢討並修正無法因應自駕車發展之交通法令,以避免對自駕車發展產生不必要之阻礙。 法令與基礎環境的一致性:運輸部將致力於讓法規環境與自駕車運作環境於全國具備一致性。 主動積極:運輸部將主動提供各種協助,以建構動態且具彈性之自駕車未來,亦將針對車聯網等相關補充性技術進行準備。 保障並促進自由:運輸部將確保美國民眾之駕駛自由,並支持透過自駕科技來增進安全與弱勢族群之移動便利,進而促進個人自由。   「自駕車3.0政策文件」並建立五個策略,包括利益相關人參與、典範實務(best practice)、自願性標準、目標研究(Targeted research)與規範現代化等,配合以上原則進行。美國運輸部並肯認其先前提出之「安全願景2.0(A Vision for Safety)」中之安全性架構,並鼓勵技術與服務開發商持續遵循自願性之安全評估,並重申將依循自我認證(self-certification)而非特定認證管制途徑,以促進規範之彈性。

美國提出加速營業秘密盜竊調查的相關立法

  2021年6月,美國有多位參議員針對營業秘密保護提出立法建議,目的是要讓認為自己的智慧財產權受到竊取的企業,可阻擋盜竊其營業秘密者的相關產品進口到美國。   參議員John Cornyn和Christopher Coons提出藉由修改1930 年的關稅法(Tariff Act),在美國國際貿易委員會(International Trade Commission,簡稱ITC)中設立新的委員會,並由美國司法部長(Attorney General)領導,負責調查背後為國外政府支持之競爭對手的智慧財產權盜竊指控。智慧財產權所有者可透過提交經宣誓的聲明書提出指控,或由司法部長辦公室提出指控。此立法設定30天的調查期限讓調查人員決定是否在冗長的審查展開時停止其產品進口。該法案將適用於來自任何國家的進口產品,但據了解,目前大部分的智慧財產盜竊指控都是來自於中國大陸公司。   雖然在ITC已有類似的程序可提出救濟,但在現行制度下需要的時間過長,最近一年在ITC進行的調查平均時長為19個月。透過此法案設計的制度,將使有關當局在調查營業秘密盜竊指控時,可更容易地阻止因竊取營業秘密而製造出的產品進口到美國。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

日本發布策略性資料使用之資料管理指南,旨在協助企業將資料視為資產與產品,以策略性的運用資料

日本獨立行政法人情報處理推進機構於2025年6月11日發布《日本發布策略性資料使用之資料管理指南(下稱《指南》)》,旨在協助企業將資料視為資產與產品,以策略性的運用資料。 《指南》指出,資料管理是指企業針對其所擁有的所有資料,進行有效率的收集、整理、保存、共享、分析與運用的一套系統化流程,其目的是為了透過確保資料品質及正確性,協助業務決策,並確保企業的競爭優勢。 在現代企業經營中,資料具有雙重屬性,亦即資料除了是企業重要的經營資產,同時也是企業的產品之一。作為資產的資料如同設備等一般資產,是可供銷售或提供服務的資產,故為最大化其價值並促進成長,需要進行適當管理與投資。此外,由於資料具有可複製性,因此一經外洩,將會造成廣泛且持續性的影響,因此需進行資料管理以確保資料安全性;作為產品的資料則需要有效的整備及管理,以確保維持其正確性所需的品質。 根據《指南》,資料管理的核心在於其需要貫穿資料生命週期,且隨著數位化的進展,對於資料管理亦產生新的需求,例如針對資料多元運用需求之應對、資料須具備可追溯性、針對機密資料之管理方式、確保資料安全性及資料品質等。 為因應新興資料管理需求,《指南》建議可透過評估自身定位、規劃必要體制、思考資料策略及管理架構、盤點企業既有資料及必要資料、培養及建立企業從決策層到執行層的人員均重視資料的資料文化,以及減少不必要或易出錯的作業流程等六項具體措施,建立企業自身貫穿資料生命週期之資料管理流程。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料管理流程,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為資料管理流程設計與實務落實之參考,以強化自身資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP