美國食品藥物管理局(FDA)為落實食品安全現代法案公布食品安全查檢與風險管理相關規定

刊登期別
第28卷,第4期,2016年04月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國食品藥物管理局(FDA)為落實食品安全現代法案公布食品安全查檢與風險管理相關規定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7545&no=55&tp=1 (最後瀏覽日:2026/01/16)
引註此篇文章
你可能還會想看
歐盟資通安全局公布《提升歐盟軟體安全性》研究報告

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。   本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。   報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括: 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。

英國與美國為人工智慧安全共同開發簽署合作備忘錄

英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。

歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

國際海事組織建立海上自駕船舶監理架構

  國際海事組織(International Maritime Organization, IMO)所屬之海事安全委員會(Maritime Safety Committee, MSC)於2018年12月召開第100屆大會(MSC 100),本屆會議批准海上自駕船舶監管架構,要點如下: 一、盤點相關國際海事組織規範,以確認該規範: 是否適用於海上自駕船舶(Maritime Autonomous Surface Ships, MASS)及是否妨礙其運作與航行;或 是否適用於海事海上自駕船舶且不妨礙其運作;或 是否適用於海事海上自駕船舶且不妨礙其運作,但需要進一步調修。   MSC預計相關規範之盤點結論將於2019年6月前完成,並期待於2020年完成相關法規調適,盤點範圍包括:安全規範(SOLAS)、碰撞規範(COLREG)、載重線與穩度(Load Lines Convention)、海員與漁夫訓練(STCW, STCW-F)、搜尋與救援(SAR)、噸位丈量(Tonnage Convention)、貨櫃安全(CSC)、以及特殊貿易客船(SPACE STP, STP)。 二、 定義海上自駕船舶之自動化等級: 等級1:配備有自動化處理與決策支援船舶,海員仍於船上對船舶系統及相關功能進行控制。某些功能可以於無人監控下自動化運作,但船員於船舶上仍應於自動駕駛系統發生故障時進行人為介入。 等級2:有船員隨船之遙控控制船。該船舶係由岸上人員控制,惟船上之船員可於必要時介入並接手運作該船舶之自動駕駛系統與功能。 等級3:未有船員隨船之遙控控制船,該船舶由岸上人員控制。 等級4:全自動化船舶,船舶之自動駕駛系統可自行做出決策並反應。   此外,MSC預計提出海事海上自駕船舶航行指引(Guidelines on MASS trials),該指引將於下一會期(MSC101)之國際海事委員會會議進行草擬。

TOP