美國食品藥物管理局(FDA)為落實食品安全現代法案公布食品安全查檢與風險管理相關規定

刊登期別
第28卷,第4期,2016年04月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國食品藥物管理局(FDA)為落實食品安全現代法案公布食品安全查檢與風險管理相關規定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7545&no=55&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
俄羅斯聯邦政府發布第299號法令,得不經授權利用「不友好國家」的專利權

  俄羅斯聯邦政府於2022年3月7日發布第299號法令(Постановление Правительства Российской Федерации № 299,下稱本法令),規定於有國家利益考量之情況下,得不經授權利用「不友好國家」的專利權。而我國也在前述「不友好國家」名單之列。   具體而言,本法令之解釋脈絡應從俄羅斯民法(Гражданский кодекс Российской Федерации)第1360條談起,該條規定在確保國家安全或保護公民生命與健康之極端必要情況下,俄羅斯聯邦政府有權決定,未經專利權人同意,使用相關發明、新型和工業品外觀設計,惟需儘快通知專利權人,並支付相應之補償金。   2021年10月18日,俄羅斯聯邦政府按民法第1360條第2項規定,頒布第1767號法令(Постановление Правительства Российской Федерации № 1767)確定補償數額為受專利保護之商品與服務所產生實際收益之0.5%。   然而,因烏俄戰爭持續延燒致俄羅斯聯邦政府採取反西方制裁措施之故,其發布第299號法令,針對第1767號法令再次增修補償數額之認定方法,規定:「倘專利權人來自『不友好國家』,則俄羅斯實體或個人未經專利權人同意,使用相關發明、新型或工業設計進行生產、銷售商品、提供勞務及服務時,須向權利人支付權利金為前述活動所產生實際收益之0%」。   基此,第299號法令應限縮在有國家利益考量之情況下(如:與國家安全或保護俄羅斯公民的生命、健康相關),針對使用特定的專利或商品,可免支付專利強制授權的補償金。換言之,本法令不應解讀為,任何專利在俄羅斯都可恣意利用,而無需經權利人同意或支付適當補償。惟因無法預期未來俄羅斯聯邦政府對「不友好國家」會否有其他強制授權情事,故我國經濟部智慧財產局發函通知專利權人,應密切關注相關議題,並預作準備以降低風險。

新加坡律政部向國會提交著作權法新法草案

  新加坡律政部(Ministry of Law)於2021年7月6日向國會提出新的《著作權法》(Copyright Bill),以廢止和取代現行法令(Copyright Act)。新法修正了舊法關於創作、散布和使用方式的規定,讓法令更與時俱進以完善新加坡的著作權保護。此外,新法簡化法條用語,使其更容易理解。   新法的特點有: 1.為創作者引入新的權利和救濟措施,以確保著作權能夠繼續鼓勵創作並激發創造力。例如: (1) 使用者應取得創作者或表演者的許可,始可公開地利用或在網路散布創作者或表演者的資料。此規定係賦予創作者或表演者的身分識別權,有助於個人創作者和表演者建立起自己的聲譽。 (2) 除合約另有規定,受託製作攝影、肖像、版畫、錄音和影片的著作權歸屬於創作者,此規定迥異於目前乃委託者擁有著作權。新法的規定,使創作者有更好的條件與委託者談判,並可將其作品商業化。 2.對著作權人之權利制定「允許使用」(permitted uses)的例外,擴大著作的使用權,以利著作造福社會並且支持創新。例如: (1) 倘係合法取得著作(如未規避付費牆paywall),則可將該著作用於資料計算分析(computational data analysis),如情感分析、文本和資料探勘(text and data mining),或訓練機器學習,而無需向每個著作權人取得許可,新規定對研究和創新將有助益。 (2) 教師和學生如果確認資料來源為合法時,可以在教育活動中(如居家學習)使用免費的網路資料。惟知悉來源有侵犯著作權時,則應停止使用。 3.此外,現行法令針對販賣或提供盜版視訊盒(set-top box)的業者,未清楚規定是否應負責,新的《著作權法》則明文著作人得追究販售、宣傳或散布違法且侵權設備或服務而牟利的業者。   新法若經國會通過,預計於2021年11月可實施該法大部分條款。

加拿大政府公開徵求利用衛星擴充行動通訊覆蓋範圍之意見,期能彌平通訊落差現況

加拿大創新科學暨經濟發展部(Innovation, Science and Economic Development Canada, ISED)於2024年6月24日啟動「以衛星擴充行動通訊覆蓋範圍之政策、授權與技術框架」(Policy, Licensing and Technical Framework for Supplemental Mobile Coverage by Satellite (SMCS))公眾意見徵詢,指出偏遠地區通訊服務不足之現況將帶來嚴重公共安全風險,並抑制經濟成長與社會融合,因此提出擬透過公眾意見徵詢達成之四項政策目標如下: (1)為服務缺乏、不足之區域提供行動通訊服務; (2)促進無線服務提供之競爭性,提供消費者更多選擇; (3)提升電信服務的可靠性與韌性; (4)開發創新應用促進無線網路的投資與發展。 以此政策目標為基礎,ISED就以下內容徵詢公眾意見: (1)頻譜政策框架: 於考量區域/國際協調、利害關係人利益、最小化干擾等因素後,提出多個適用頻段選項。 (2)SMCS授權框架: 探討以行動衛星服務(Mobile satellite services, MSS)框架為基礎,對衛星與地球基地臺(如手機)分別進行授權,並針對個別許可證授予條件(如不允許排他性條款等)提出建議。 (3)技術考量因素: 討論行動通訊消費者設備與SMCS太空基地臺技術要求、同頻段共存與預防干擾等議題。 新的SMCS框架預計於2025年4月1日生效,而在新框架生效前,考量到試驗或早期布建能帶來之利益,ISED將依據文件內之資格要求,針對個案核發SMCS暫時許可。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP