建立G2B2C電子公文交換法制

刊登期別
2004年
 

相關附件
※ 建立G2B2C電子公文交換法制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=757&no=57&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
何謂拜杜法案「Bayh-Dole Act」?

  美國國會於1980年通過了拜杜法案(Bayh-Dole Act),正式名稱為1980年大學與小型企業專利程序法(University and Small Business Patent Procedures Act of 1980, 35 U.S.C. 200 et seq.)。經濟學人(The Economis)曾對美國拜杜法評價為「可能是過去半世紀在美國所成立之最具創見之法律」,其目的是讓大學、中小企業等與聯邦機構締約,執行聯邦政府資助的研發計畫後仍能保有其研究成果之專利,亦即將此研究成果的專利申請權歸屬於受資助之大學或中小企業,而非聯邦政府。   拜杜法案(Bayh-Dole Act) 35 U.S.C. § 201(c)對立約人(contractors)定義為,任何簽署資助協議的自然人、小型企業、或非營利機構。而權利歸屬部分,規定於35 U.S.C. § 202,非營利機構、中小企業等與聯邦機構簽訂資助契約之承攬人可以選擇是否擁有受資助發明(elect to retain title to any subject invention)之權利。再者,立約人負責專利管理事務之人員,應於知悉受資助發明的合理期間內,向聯邦機構揭露該發明,若未於合理期間內揭露,則該發明歸屬於聯邦機構。並且,立約人應於揭露發明後2年內,以書面行使其選擇權,逾期則該發明權利歸屬於聯邦機構。另 35 USC § 203有介入權規定,聯邦機構認為有必要時,得要求立約人、其受讓人或其專屬被授權人將發明專屬、部分專屬(partially exclusive)或非專屬授權予申請人,聯邦機構得自行為之。

淺談日本地方政府立法規範基改作物種植之趨勢

Dell與Alcatel-Lucent在東德州“線上買賣”(Online Buying)專利侵權訴訟,Dell敗訴

  美國東德州聯邦地方法院的法官於今年2月5日,對Dell指稱Alcatel-Lucent侵害其所有之兩項線上管理顧客及產品資料的電腦製造方法專利乙案作出判決。判決指出,因為Dell無法向陪審團證明Alcatel-Lucent有引誘或侵害Dell專利權的事實,而Alcatel-Lucent亦無法以明確且具說服力的證據證明系爭案件中Dell所有的專利為無效,所以本案亦無任何損害賠償問題。Dell於訴訟中所主張的兩項專利權,主要為關於加速促進顧客線上下單購物的技術,其美國專利權號碼分別為6,182,275及6,038,597。關於本判決結果,原告Dell方面尚未表示是否會對本判決提起上訴,然被告法商Alcatel-Lucent則對此判決結果表示則肯定。   Alcatel-Lucent與Dell之間的專利訴訟並未就此結束, Alcatel-Lucent在加州之前起訴Dell, Gateway及Microsoft專利侵權之訴訟,主要為影像解碼及選擇影像播放模式技術之專利,專利號碼分別為4,958,226; 4,383,272; 4,763,356;5,347,295及 4,439,759.,該專利訴訟自2003年開始在加州纏訴。Alcatel-Lucent主張被告三家公司應給付專利侵權之損害賠償一共超過美金30億的天價,本案業已上訴,審理的法院已訂期將於近日展開審判。然而,由於Gateway去年被宏碁(Acer)併購後,已積極地與Alcatel-Lucent進行談判,雙方並於今年2月中達到庭外和解的協議。所以,Dell在東德州敗訴的消息,是否會影響其未來在加州是否會繼續訴訟或尋求庭外和解的態度,將是市場人士專注的焦點。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP