美國NITRD計畫係指支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫。美國國會推動所謂的「網絡運作與資訊科技研發現代法(Networking and Information Technology Research and Development Modernization Act)」新法案,藉此取代1991年通過的高速運算法(High Performance Computing Act),進行現代化修法。新法將用來繼續支持「網絡運作與資訊科技研發計畫(Networking and Information Technology Research and Development,NITRD)」之政府補助計畫,統整21個聯邦行政機關用於發展資通訊科技之業務與預算,提升政府整體效率。藉由補助學校之外,以公私協力之方式補助企業發展非加密網路、電腦、軟體、資安及相關資訊科技,將藉由加速基礎建設發展,強化資安和隱私保護之資通訊科技。但補助主軸將取代舊法對高速運算電腦研發之重視,轉為重視發展虛實融合系統(Cyber-Physical System,CPS),以利鋪設大數據或物聯網發展所需之資通訊科技基礎建設。而這些資通訊科技的重要性不僅只是影響一般的資通訊科技發展,更能協助其他許多科技及工程領域加速發展,包括從太空科技到生技研發等。
本文為「經濟部產業技術司科技專案成果」
根據美國北加州聯邦地方法院之資料公佈,APPLE已於上週對“Mac Clone”(克隆機)廠商PSYSTAR追加控訴,指控PSYSTAR侵犯了APPLE的著作權和商標權,同時,亦違反了美國1998年通過之數位千禧年著作權法(DMCA - Digital Millennium Copyright Act)的規定。APPLE表示,尚有其他廠商涉及本案,但APPLE仍未公佈其他涉案廠商名單。 PSYSTAR總部位於美國佛羅里達州,今年4月其推出了安裝APPLE Leopard OS X作業系統的低價個人電腦。此“Mac Clone”(克隆機)標準版售價為399美元,高階版售價999為美元。繼今年7月APPLE對PSYSTAR提起法律訴訟後,11月26日又針對PSYSTAR推出的“Mac Clone”(克隆機)追訴其侵犯了APPLE著作權和商標權。 今年8月份,PSYSTAR曾反控APPLE,宣稱APPLE把Mac機種之硬體和Mac OS X作業系統實行捆綁銷售(Tying),已明顯涉及不公平競爭,並違反美國反壟斷法相應條款。APPLE於9月份已要求法院認定PSYSTAR該項反訴無效。該起訴訟的主審法官威廉•阿爾薩普(William Alsup)於11月18日已作出裁決,認定PSYSTAR對APPLE的反訴無效。 APPLE的律師表示,該公司已握有充足之證據,因此決定對PSYSTAR提出其違反DMCA法案的追加指控。但APPLE的律師沒有對此證據加以具體說明,僅表示該項新指控與PSYSTAR的產品和市場行銷活動有關。 按照原定訴訟程序,APPLE起訴PSYSTAR的訴訟預計將於2009年11月09日開庭審理,PSYSTAR和APPLE雙方必須於2009年08月20日之前向法院提交一份描述兩造觀點和權利的說明。
歐盟提出人工智慧法律調和規則草案歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。 歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。 本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式: 一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。 二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。 三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。 AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
歐洲法院2017年12月認定Uber是運輸服務業巴塞隆納計程車工會認為Uber未受西班牙運輸服務業相關法令管制,而有違反公平競爭之虞,因此向西班牙巴塞隆納3號商事法院提起訴訟。3號商事法院認為有必要進一步釐清Uber之商業模式究竟是否為歐盟法令下之運輸服務業或資訊服務業,亦或兩者均是。這將影響歐盟內部市場指令和電子商務指令之涵蓋範圍,從而決定Uber是否有違反競爭法。 為此,歐洲法院在2017年5月做出先行裁決後,於同年12月做出判決,認定Uber之性質是運輸服務業,因此排除前述指令之適用,應接受各國運輸服務業相關法令之要求,否則違反公平競爭。法院觀點認為縱然其商業模式看似乘客與駕駛之間為自由選擇之連結。然而,Uber提供的平台是這個連結不可或缺的關鍵以外,對於運輸服務的提供,包括價格、車輛、駕駛的選擇具有決定性的影響力。此外,Uber藉由組織這樣的運輸服務來獲取利潤本身就涉及了運輸服務的直接提供。所以Uber整體服務的主要組成部分必須被視為以運輸服務構成,不應被分類為資訊服務。