「群眾募資(crowdfunding)」過去原泛指一切提出資金需求計畫,向社會大眾招募資金的行為;目前則指資金需求者透過群眾募資網路平台提出資金需求,由平台代為籌資後再將資金轉交與資金需求者之活動。
群眾募資可紓解創業家有創意無資金無擔保品的資金困境,因此主要運用於難以透過傳統金融管道取得資金之產業,例如文化創意產業。然而除了商品生產或短期計劃的募資,廣義的群眾募資運用尚包含永續的事業資本募集以及週轉資金募集。目前各種群眾募資模式可分為捐贈模式、股權模式及債權模式:
1、捐贈模式:群眾捐錢贊助某個特定方案,但不期待因個人的捐助而獲得任何金錢上的回報。但通常會獲得提案者承諾提供之實物或者是體驗服務作為回饋。
2、資本模式(或稱股權模式):群眾透過網路平台將金錢投入某個專案,未來可以獲得因該專案所成立之公司的股票,或者是獲得盈餘或收益的分配。
3、債權模式:群眾透過網路平台將金錢借給某個專案或某人某公司,承諾未來會償還所借之金額及利息。
本文為「經濟部產業技術司科技專案成果」
日本近年來對於線上遊戲對戰之電子競技活動的觀戰人數逐漸上升,而由於職業電競選手在赴日參加比賽時,會因為獎金收入而面臨申請簽證上的困擾,為了能更有效吸引世界一流選手前日本參賽,實有必要對相關行政程序進行修正。 而根據日本權威經財經媒體「日本經濟新聞」之報導,日本法務省將針對以參加線上遊戲比賽賺取獎金為業的電子競技選手,在入境日本以核發「娛樂類簽證」之方式解決前揭問題,同時透過審查國外選手在母國參與電競活動的實際成績,以防止出現利用此漏洞不法滯留日本之問題。 對於法務省此項決定,日本電玩遊戲相關媒體多以「電競選手待遇將比照運動選手」為題進行報導。然而經查日本法務省針對外國人之入境簽證,依其入境之目的區分為高度專門職、教授教育、藝術文化、宗教、採訪、經營、留學等十六種,而職業運動員簽證事實上並非單一獨立類別,而係與歌唱、舞蹈、演奏、電影製作、商業攝影、商業錄音等共通歸類為「娛樂類簽證」之下,因此日本法務省此一作法是否果真代表在簽證核發一事,已將職業電競選手視為職業運動員,尚難有具體結論。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
中國大陸網路安全法於6月1日正式施行中國大陸網路安全法於去(2016)年11月通過,於今(2017)年6月1日正式施行,該法主要係為了保障網路安全,維護網路空間主權與國家安全、社會公共利益,保護公民、法人和其他組織的合法權益,為第一個國家層級處理網路安全問題的法律,旨在確保維護網路空間的國家主權、保護使用者個資、防範網路攻擊及網路詐騙。 中國大陸網路安全法共七章79條,包括第一章總則、第二章網路安全支持與促進、第三章網路運行安全、第四章網路訊息安全、第五章監測預警與應急處置、第六章法律責任、第七章附則。其規範重點之一為關鍵資訊基礎設施正式納入網路安全保護範圍內,關鍵資訊基礎設施之定義不僅包括電力、運輸和金融等傳統關鍵行業,還包括法律規定涉及民生的其他基礎設施,表示任何關鍵資訊基礎設施相關廠商、供應商等外國公司,以及擁有大量中國大陸訊息的廠商,都有可能成為中國大陸網路安全法監管、執法調查、強制執行的主要對象。 中國大陸網路安全法亦要求關鍵資訊基礎設施相關廠商將個資與重要數據資料在地化,或是將這些數據資料傳輸至國外前,必須經過相關的監管機構進行自我安全評估或先加以批准。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。