「群眾募資(crowdfunding)」過去原泛指一切提出資金需求計畫,向社會大眾招募資金的行為;目前則指資金需求者透過群眾募資網路平台提出資金需求,由平台代為籌資後再將資金轉交與資金需求者之活動。
群眾募資可紓解創業家有創意無資金無擔保品的資金困境,因此主要運用於難以透過傳統金融管道取得資金之產業,例如文化創意產業。然而除了商品生產或短期計劃的募資,廣義的群眾募資運用尚包含永續的事業資本募集以及週轉資金募集。目前各種群眾募資模式可分為捐贈模式、股權模式及債權模式:
1、捐贈模式:群眾捐錢贊助某個特定方案,但不期待因個人的捐助而獲得任何金錢上的回報。但通常會獲得提案者承諾提供之實物或者是體驗服務作為回饋。
2、資本模式(或稱股權模式):群眾透過網路平台將金錢投入某個專案,未來可以獲得因該專案所成立之公司的股票,或者是獲得盈餘或收益的分配。
3、債權模式:群眾透過網路平台將金錢借給某個專案或某人某公司,承諾未來會償還所借之金額及利息。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
FDA針對境內個人化診斷醫療器材管理發布指引文件草案為促進美國境內個人化診斷醫療器材發展並進一步實現個人化醫療之理想與目標,於今(2011)年7月14日時,FDA於各界期盼下,正式對外公布了一份「個人化診斷醫療器材管理指引文件草案」(Draft Guidance on In Vitro Companion Diagnostic Devices)。而於此份新指引文件草案內容中,FDA除將體外個人化診斷醫療器材定義為:「一種提供可使用相對應之安全且有效治療產品資訊之體外診斷儀器」外,亦明確指出,將視此類個人化檢測醫療器材產品為具第三風險等級之醫療器材,並採「以風險為基礎」(Risk-Based)之管理方式。 依據上述新指引文件草案內容,FDA對於此類產品之管理,除明訂其基本管理原則外,於其中,亦另列出兩項較具重要性之例外核准條件。第一項,是關於「新治療方法」(new therapeutics)部分,FDA認為,於後述情況下,例如:(1)該項新治療方法係針對「嚴重」或「威脅病患生命」、(2)「無其他可替代該新治療方法存在」、或(3)將某治療產品與未經核准(或未釐清)安全或功效之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或未釐清之體外個人化診斷醫療器材所將產生之風險等前提下,FDA或將例外核准該項新治療方法。其二,是關於「已上市治療產品」部分,依據新指引文件草案,於下列各條件下,或將例外核准製造商以補充方式所提出之「新標示」產品之上市申請案,包括:(1)該新標示產品乃係一項已通過主管機關審查之醫療產品,且已修正並可滿足主管機關於安全方面之要求;(2)該產品所進行之改良須仰賴使用此類診斷試劑(尚未取得核准或未釐清安全功效);(3)將此項已上市治療產品與未經核准或未查驗釐清安全(或功效)之體外個人化診斷醫療器材並用時,其為病患所帶來之利益,明顯高於使用該項未經許可或查驗釐清之體外個人化診斷醫療器材所具之風險等。 此外,FDA方面還強調,若針對某項個人化診斷醫療器材之試驗結果顯示,其具較顯著之風險時,將進一步要求業者進行醫療器材臨床試驗(Investigational Device Exemption,簡稱IDE)。而截至目前為止,此項新指引文件草案自公布日起算,將開放60天供外界提供建議,其後FDA將參考各界回應,於修正後,再提出最終修正版本指引文件;然而,究竟FDA目前所擬採取之規範方式與態度,究否能符合境內業者及公眾之期待與需求?則有待後續之觀察,方得揭曉。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
美國FDA將整合區塊鏈等新興技術於電子協同運作系統之開發,以提升藥物供應鏈的安全性依據2013年11月27日通過之藥物供應鏈安全法(Drug Supply Chain Security Act, DSCSA),美國食品與藥物管理局(US Food and Drug Administration, FDA)於2019年2月7日公布新的領航計畫(Pilot Program)。此計畫主要的目標在於發展電子協同運作系統(electronic, interoperable system)以降低不合規範的藥物於市場流通的可能性,並提升患者的用藥安全。 此運作系統預計於2023年開始正式實施,其主要的功能包含辨識(identify)或追蹤處方藥物(prescription drugs)於供應鏈中的流通狀態,以及排除非法藥物進入供應鏈。於後者的情形,此運作系統將同時協助相關主管機關在非法藥物於市場中流通時迅速反應。FDA進一步指出,為達到這些目的,將引入區塊鏈(blockchain)等已使用在全球食品供應鏈(global food supply chains)的管理技術,以促進系統運作過程中的可追蹤性(traceability)及準確性。 此計畫於2019年2月8日到3月11日間接受加入申請,FDA鼓勵供應鏈中的相關人員,包含製造商(manufacturers)、再包裝商(repackagers)及其他利害關係人(other stakeholders)加入並試行計畫中開發的運作系統等技術,以加強產品使用狀況的管理。此外,FDA未來將持續公布相關的指引草案,如藥物辨識指標(product identifiers)等,以提升產業利用性及藥物使用的安全性。