「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。
目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。
而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
本文為「經濟部產業技術司科技專案成果」
2022年2月4日英國智慧財產局(以下簡稱IPO)發布的2022至2027的智慧財產打擊侵權戰略,主要著重於智慧財產的保護,打擊智慧財產侵權行為,以保護英國企業的智慧財產。 有鑑於智慧財產侵權/犯罪被視為低風險高回報的侵權行為,此次發布的智財戰略,主要在於強化英國原有的智慧財產執法機制,著眼於對於智慧財產現今與未來所會面對的挑戰,可著重於三大主軸,包含建立夥伴關係,與其他國內外夥伴合作,將智慧財產執法資源進行整合,建立打擊智慧財產侵權的網絡;發揮領導效用,透過與夥伴的合作,強化其他國家打擊智慧財產犯罪的能力,確保英國企業的智慧財產在海外亦受到充分保護;教育提升,藉由與夥伴的合作,一起展開有效的智慧財產活動,減少智慧財產侵權行為,以及消費者認識智慧財產犯罪和侵權的行為,避免無意間捲入侵權行為中。 除以上三大主軸之外,該戰略並採用於打擊組織犯罪所用的4Ps方法,包含預防(prevent)、保護(protect)、準備(prepare)和追查(pursue),以確保跨部門合作可被有效執行。 該戰略並不是針對現行智慧財產侵權/犯罪問題提出解方,而是針對智慧財產的長期所需,試圖建立一個基本框架,確保透過公私合作關係(包含國內合作與國際合作)解決智慧財產侵權/犯罪結構,使英國企業更有信心將資源投入在創新上。
國際能源總署發布「擴大轉型金融」報告,旨在說明如何透過金融機制協助高碳排部門邁向淨零國際能源總署(International Energy Agency, IEA)於2025年10月16日發布「擴大轉型金融」(Scaling Up Transition Finance)研究報告,提出轉型金融應與綠色金融作為能源轉型的互補工具,並進一步分析轉型金融的前景與推動建議。 轉型金融是指有助於減排的金融活動,特別適用於難以減排的產業及資金需求高、但綠色金融支持有限的新興市場及發展中經濟體。報告重點分析轉型金融三大領域,並說明各產業投資方向即可量化的減碳目標,重點如下: (1)重工業:鋼鐵及水泥業合計約占全球能源燃燒與製程排放之14%,主流投資仍集中於傳統高碳排製程,導入轉型金融,除可支援中短期減碳措施外,亦能鼓勵企業於設施設計階段預留導入低碳技術之條件(即具「可改造性」,retrofit-ready),避免產生「高碳資產鎖定」與「無法回收之投資風險」。IEA建議,應結合國家層級減碳指標與產業路徑,將轉型金融納入減碳政策框架,並鼓勵金融機構明確區分綠色金融與轉型金融投資組合。 (2)關鍵原物料:原料開採與冶煉雖屬能源轉型必要條件,但亦產生排放量高、高耗水量、土地劣化與生物多樣性流失、及社會與治理風險。轉型金融則可支持低排放技術、改善ESG表現,並促進高影響力投資。IEA建議,應建立礦業轉型金融標準與績效指標;政府與多邊開發銀行應提供保證或融資機制;加強資料透明與監測機制;統籌國際供應鏈治理與稅收誘因。 (3)天然氣:IEA強調,轉型金融可協助天然氣產業減排改造,並推動替代性低碳氣體基礎建設發展,但不得成為長期依賴化石燃料之藉口,因此應用優先順序應為甲烷減量、液化天然氣減排、低排放氣體基礎設施、電力系統調節角色。且必須符合透明性、時限性及一致性等條件。其目的在於支援能源轉型初期之電力穩定與彈性,並為未來低碳氣體基礎設施鋪路。 轉型金融強調企業與金融機構的實質合作,當前挑戰在於擴大資金流與明確界定「轉型」特質。IEA建議,推動轉型金融須兼顧新興市場與中小企業參與,並強化產業別績效指標、改造潛力設計及定期審查。此外,轉型金融應提升為全球減碳融資之第二支柱,藉此面對難以減排之領域,並確保投資帶來實質減碳與能源安全等效益。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
新加坡個人資料保護委員會發布資料保護專員之職能與培訓準則新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2019年7月17日發布資料保護專員之職能與培訓準則。基於新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)明文規範非公務機關必須設立至少一名資料保護長(Data Protection Officer, DPO),負責個資保護政策之制定落實、風險評鑑及個資事故處理等工作。為了使資料保護專業人員增強能力並於企業組織有效履行其職責,新加坡個人資料保護委員會就此特別發布此準則,將資料保護專員分為三種工作職能,九項專業能力,進而規劃相關培訓課程。 此準則使企業組織能就工作職能聘僱合適之資料保護專員,亦使相關專業人員能掌握清晰之職業生涯,確定自我能力與培訓課程之落差,進而調整有效實施組織之個人資料保護管理政策與流程。其分為資料保護專員、資料保護長、區域資料保護長,依據工作職能與職責區分如下: 一、 資料保護專員 需監視與評估組織之個人資料保護管理政策與程序,並確保其遵循新加坡個人資料保護法。 識別個人資料之風險,並提出風險管控之措施。 提供組織個人資料保護政策之實施與實踐證據。 定期檢視審核,分析現況並矯正改善。 識別並規劃利害關係人之需求與利益。 二、 資料保護長 制定並審查個人資料管理計劃。 根據組織職能,視需求與流程,執行個人資料保護與風險評鑑,並解決相關業務風險。 制定培訓計劃,舉辦個人資料保護政策與流程之教育訓練。 確保組織內部個人資料保護之意識。 根據業務營運與個資法遵要求之落差評估,並建立合規性流程。 透過客戶對隱私與個人資料保護之要求,做為日後促進資料創新之實施。 三、 區域資料保護長 監督資料傳輸活動,並提供個人資料保護法之領導指南。 建立區域創新之資料保護策略。 減少區域內之個資事故。 於資料創新之運用提供戰略性,為組織創造業務價值。 評估新興趨勢與科技,如隱私增強技術、雲端運算、區塊鏈、網絡安全之風險與可行性。 針對上述工作職能與職責,結合所需之專業能力,包括個人資料管理、風險評鑑管理、個資事故緊急應變、利害關係人管理、個人資料稽核認證、個人資料治理、個人資料保護之倫理、資料共享與創新思維,規劃基礎個人資料保護相關課程與進階資料創新課程,使其個人資料保護制度更專業具有規模。目前我國對於資料保護專員並無相關立法規範,若未來修法新加坡個人資料保護委員會之做法亦值參酌。