「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。
目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。
而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。
本文為「經濟部產業技術司科技專案成果」
為了實現在2018年將無人飛行載具(drone)運用於離島或山區的貨物配送之目標,日本國土交通省及產業經濟省自2017年9月起舉行了6次「關於無人飛行載具的目視外與越過第三人上空之飛行檢討會」,並於2018年3月29日發表了其所統整出無人載具進行無輔助者目視外飛行之相關要件。 依據現行航空法第132條之2、國土交通省頒布的「無人航空機飛行手冊」第3點、以及該發表的內容所示,無人載具的目視外飛行除須就機體、操縱技術與安全對策的面向具備相關要件,尚要求在操縱者之外,應配置輔助者,在飛行時監視飛行與氣象狀況,同時管制飛行路線正下方及其周邊的第三人出入,並綜整判斷上述資訊,適時給予操縱者安全飛行所必要的建議。 基此,該發表指出,考量到以現行的技術而言,地上設備與機上裝置仍難以完全取代輔助者所扮演的角色,故就無輔助者的情形,除在現行飛行基準上,附加:1. 飛行路線須選在第三人存在可能性低、且有人機不會飛行的場所與高度;2. 機體須具備預想中用途的相當飛航實績;3. 事前履勘飛行路線與擬定意外發生時的對策等條件外,又增設新的個別要件如下: (1)就第三人的出入管理,設置能遠距離監視的攝影機,並在管制區域設置看板或海報等,以警示附近居民; (2)對機體施以增加辨識度的塗裝,裝設可供遠距離監視有無有人機接近的攝影機、或將飛行計畫事前提供給有人機營運者; (3)隨時掌握自機狀況,擬定在異常情形發生時降落的適切對策; (4)在飛行路線或機體裝設氣象計以監測氣象狀態,令其得以在判明天候狀況超出機體所能負荷限度的當下即時降落。 預期該發表內容將會成為日本「面向空中產業革命之行程表」中,關於目視外飛行審查要點修訂項目的重要參考基準。
英國資訊委員辦公室表示個人資料之處理應遵循GDPR,公務機關也不例外自西元2017年1月以來,英國稅務海關總署(Her Majesty's Revenue and Customs, HMRC)開始要求英國民眾使用線上語音方式進行身分認證,而民眾的聲音檔案亦被儲存至英國稅務海關總署的語音資料庫內。英國資訊委員辦公室(Information Commissioner's Office, ICO)深入調查後發現英國稅務海關總署的語音身分認證系統存在下列兩種違法情形: 未能向民眾充分揭露、告知民眾其語音、聲紋等生物識別資料如何被處理等資訊。 蒐集民眾的生物識別資料時,未能給予民眾自由行使同意或拒絕權利的機會。 英國資訊委員辦公室認為英國稅務海關總署前開情形已經違反了歐盟一般資料保護規則(General Data Protection Regulation, GDPR),根據歐盟一般資料保護規則,英國稅務海關總署在蒐集、處理或利用民眾個人資料時,必須合法、公正及透明,並應取得民眾的明確同意。英國資訊委員辦公室後續將要求英國稅務海關總署應刪除違法蒐集的生物識別資料。 本次英國資訊委員辦公室的執法行動是基於2018年5月25日生效的歐盟一般資料保護規則與英國2018年資料保護法(The Data Protection Act 2018),英國資訊委員辦公室強調創新的數位服務雖有助於民眾的生活更輕鬆,但絕不能以犧牲民眾的隱私為代價,同時也隱約透露著:「沒有一個組織(包含政府機關)能夠凌駕於法律之上。」。
美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。 聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。 政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。 因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。