歐盟佐審官建議修正與加拿大之「航空乘客個人資料共享協議(草案)」,以維護人權

  歐洲聯盟法院(CJEU)佐審官 (Advocate General ) Paolo Mengozzi 於今年(2016) 9月8日提出一份不具拘束力之「航空乘客個人資料共享協議(草案)」( European Union on the transfer and processing of passenger name record data (“PNR Agreement”)) 法律意見,認為協議應遵守歐盟憲章有關人權之基本原則。此份法律意見為歐洲聯盟法院首次就國際協議草案,檢視與歐盟憲章有關規範之一致性。

[背景]
  PNR協議草案於2010年5月開始協商,2014年6月25日簽署。主要以反恐為目的讓歐盟與加拿大交換航空乘客資訊(包括旅客姓名、旅行日期、行程記錄、機票、聯繫資訊、旅行社等其他有關資訊)。除加拿大之外,歐盟亦與美國、澳洲簽有類似資料共享協議。關注到PNR協議有關隱私、人權之議題,歐盟議會將PNR協議提至歐洲聯盟法院審議。

[法律意見]
  佐審官認為,協議同意在特定條件下就限定目標之乘客蒐集其敏感資訊,未違反歐盟憲章;然PNR協議草案仍有部分內容違反歐盟憲章:即草案允許歐盟、加拿大主管機關使用乘客姓名等數據,已逾越預防恐怖組織犯罪和跨國犯罪的必要範圍。

  因歐洲聯盟法院去年已廢除歐盟與美國之間之安全港(Safe Harbor)法案,隨後雖起草隱私保護協議(Privacy Shield),但仍有意見質疑隱私保護之完整性。PNR協議草案法律意見之提出,可窺歐盟關於隱私保護之立場。

相關連結
※ 歐盟佐審官建議修正與加拿大之「航空乘客個人資料共享協議(草案)」,以維護人權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7602&no=67&tp=1 (最後瀏覽日:2026/01/03)
引註此篇文章
你可能還會想看
歐盟計畫降低學名藥壁壘 開罰Teva和Cephalon 6050萬歐元

  歐盟執行委員會(以下簡稱執委會)於2020年11月以延遲平價學名藥進入市場、違反歐盟反托拉斯法為由,裁罰以色列學名藥廠Teva和美國生物製藥公司Cephalon共6050萬歐元。   Cephalon販售的Modafinil是用於治療猝睡症的藥物,為長年佔Cephalon全球營業額40%以上的暢銷產品。儘管其主要專利已於2005年在歐洲到期,但Cephalon仍保有部分Modafinil的延續性專利(secondary patents)。原先欲以Modafinil學名藥進軍市場的Teva也有Modafinil的相關專利,然而Cephalon和Teva達成「延遲給付」(pay-for-delay)協議,Teva同意暫緩進入市場且不去挑戰Cephalon的專利。執委會經調查發現,該協議排除Teva成為Cephalon的市場競爭者,使Cephalon的專利即使到期多年產品仍可維持高價位。   延遲給付協議在專利和解上通常是合法行為,但執委會認為此舉使患者和健保體系無法即早受惠於市場競爭帶來的低價,協議廠商卻享有缺乏競爭所產生的額外利潤。歐盟日前發布的《歐洲藥品戰略》(Pharmaceutical Strategy for Europe)更強調藥品應是全民可負擔、可取得及安全的,而維持自由競爭對達成此目標至關重大。執委會認為延遲給付協議違反《歐盟運作條約》(Treaty on the. Functioning of the European Union, TFEU)第101條,以協議限制或扭曲歐盟內部市場競爭,故裁處高額罰款。2022年歐盟將採取措施降低學名藥進入市場的阻礙,考慮進行審查、要求廠商使其專利藥品在全歐盟境內都可被取得,否則將縮短其智財權的保護期間。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

美國聯邦最高法院於Michigan v. EPA案中認定減碳措施需先考量成本效益

美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升

2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。 以下說明數位證據系統的重點: 1.數位證據系統適用的案件範圍 適用於「小額訴訟當事人於聽證會前之證據開示程序」。 關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。 依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。 2.數位證據系統可上傳的數位證據類型 訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。 當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。 經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。 該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。 3.數位證據系統的檔案權限控管之設定 (1)上傳、編輯、刪除權限 訴訟當事人可上傳數位證據。 於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。 (2)線上瀏覽權限 上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。 於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。 (3)下載權限 訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。 4.證據於數位證據系統的保存期限 於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。 美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。 上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP