微軟在美國政府索要用戶郵件的一起官司中獲得勝訴。美國政府第二巡迴上訴法院裁決,如果資料是儲存在美國境外伺服器,則不為美國聯邦政府的令狀效力所及。
這件訴訟案源於2013年的一起涉外毒品案件中,紐約區法院發布了一項搜查令,要求微軟提供公司一名用戶的郵件和相關訊息。然而因為有些資料是存放在微軟公司在愛爾蘭的伺服器,因此微軟爭辯說郵件本身是儲存在愛爾蘭的,因此不應受到美國政府令狀效力所及。2014年聯邦地方法院再次要求微軟提供郵件內容——但微軟上訴到了聯邦第二巡迴法院。
美國聯邦第二巡迴法院在判決中,認定基於《儲存通訊記錄法》(Stored Communications Act:SCA/下稱SCA)規定美國政府得以令狀要求連結網路使用者資料的規定並不適用於境外。法院所持理由為:
1. SCA規定搜索票/扣押票之核發應符合美國聯邦刑事訴訟法之相關規定,而美國聯邦刑事訴訟法第41條即規定搜索票/扣押票應由搜索/扣押標的物所在地之法院核發並交由該地或國內他地執法人員執行。
2. 法院曾於2010年之MORRISON ET AL. v. NATIONAL AUSTRALIA BANK LTD. ET AL.案判決理由中指明,如國會立法時認為某法規可能或必須有域外效力,應以明文定之,而SCA條文中並無任何規定寫明該法可於境外適用之。
3. SCA在第2703條所使用之搜索票/扣押票(warrant)一字,源自美國憲法增修條文第四條,即規定美國政府對其國內人民為搜索扣押時應以搜索票/扣押票(warrant)為之,且SCA更刻意以不同條款及不同強度區分搜索票/扣押票(warrant)與傳票(Subpoena),立法者之用意顯然是希望能以前者提供使用者更高度的隱私保護。 這是美國首例企業對獲取境外資料的政府搜查令提起上訴的案件,審判結果影響著美國法律界對於執法機關是否能就存放在世界上其他國家的美國用戶資料,進行合法調查。
日本納稅作業效率和全世界其他先進國家相比仍然偏低,根據世界銀行之調查,日本企業每年花費納稅作業的時間約330小時,是OECD會員國平均時間的1.9倍。為有效提高企業處理稅捐事務作業之效率,日本財務省研擬要求企業申報法人稅和消費稅時必須以電子方式進行,目標是在今年6月前提出具體草案,納入2018年度的稅制改正大綱。 日本自2004年起開辦法人及自然人透過網路申報納稅,各地稅務署可透過國稅綜合管理(SKS)系統讀取申報書類並取得其內容,且由於相關申報書類依法應保存9年,利用電子申報方式可有效節省空間成本程序負擔。 以2015年為例,法人稅全年總申報件數約196萬件,其中已有75%是經由網路申報。但另一方面,資本額1億元以上的日本企業經由網路申報者則僅有52%,理由除了大企業多有自成一格的總務會計系統,以及普遍仍存在以收據等文件進行報帳的習慣外,佔稅收全體約4成的地方稅目前仍有許多地方政府尚未提供電子申報之服務也是重要原因,就此總務省亦將持續進行基礎設施之整建以克服此問題。 我國自1998年擘劃電子化政府起至今已邁入第五階段,為能達成「便捷生活」、「數位經濟」及「透明治理」三大目標以及「打造領先全球的數位政府」之願景,應可參考前述日本政府之各項作法。
美國科技公司指控六名中國人竊取科技公司營業秘密美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。 據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。 美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。