保護、分級與言論(上)

刊登期別
2005年04月,第185期
 

相關附件
※ 保護、分級與言論(上), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=761&no=57&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

基因轉殖複製羊 創造生技產業的新利基

  台灣複製動物技術又邁向新的里程碑。行政院長謝長廷於 9月8日上午宣布台灣第一頭外帶基因轉殖複製羊「寶鈺」,成功繁殖下一代,並將人類第八凝血因子成功遺傳給下一代。   目前人類第八凝血因子市價每公克價值 290萬美元﹙相當於新台幣8千萬元﹚, 全球每年約需要 300公克,預計將創造8億至9億美元價值的市場,由於「寶鈺」母子成為凝血因子供應源,其產值及身價自然十分驚人。雖然距離商品化階段仍有一段距離,但此項技術於世界已屬領先。   「寶鈺」順利產下後代將創下我國體細胞製動物正常繁殖後代之首例,以及開創基因轉殖羊之下一代傳承母羊外源基因人類第八凝血因子之生物科技的突破,未來運用複製與基因轉殖科技,利用家畜泌乳系統作為生物反應器以生產醫藥蛋白,將可成為台灣生技產業之利基點。

歐洲推動人體生物資料庫再利用沙盒

  非營利組織EIT Health於2020年2月展開公共人體生物資料庫(Public biobank)再利用之「數位沙盒」(Digital Sandbox)計畫的第二次公開徵求。參與的中小企業於提案後,可於2020年7月底前獲得通過與否的通知,並最快於2020年9月開始參與計畫。   EIT Health成立於2015年,是歐洲創新技術研究所(European Institute of Innovation and Technology)下的「知識與創新社群」(knowledge and innovation community)之一,主要資金來自歐盟「展望2020」(Horizon 2020)。有鑑於數位革命創造了大量極具研究價值的醫學生物資料,EIT Health於2019下半年提出公共人體生物資料庫再利用之「數位沙盒」計畫構想,該計劃主要目的在支持中小企業利用該生物資料實施創新服務或開發產品。   而依據歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第89條規定,如果生物資料庫之利用係基於科學研究或公共利益之必要,可以在符合「適當的技術和組織措施」(Technical And Organisational Measures)之前提下得到豁免(exemptions)。依此條文,EIT Health之「數位沙盒」計畫參與者得不遵守GDPR第15條(資料主體之接近使用權)、第16條(更正權)、第18條(限制處理權)、第19條(關於更正或刪除個人資料或限制處理之通知義務)、第20條(資料可攜性權利)以及第21條(拒絕權)之規定。透過此計畫,有望幫助中小企業獲得公共人體生物資料庫、研究參與者(Sample holder)和登記冊的近用權限。此外,計畫亦提供最高35,000歐元的資金,以幫助中小型企業在開發創新產品時利用資料。

德國向歐盟提交《人工智慧白皮書-歐洲卓越與信任概念》及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》意見

  德國聯邦政府於2020年6月29日,針對歐盟執委會於2020年2月19日公布的《人工智慧白皮書-歐洲卓越與信任概念》(Weißbuch zur Künstlichen Intelligenz – ein europäisches Konzept für Exzellenz und Vertrauen)及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》(Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung) 提交意見,期能促進以負責任、公益導向、以人為本的人工智慧開發及使用行為,並同時提升歐盟的競爭力及創新能力。   歐盟執委會所發布的人工智慧的白皮書及人工智慧對安全和責任的影響報告,一方面可促進人工智慧使用,另一方面則藉此提醒相關風險。本次意見主要集結德國聯邦經濟與能源部、教育與研究部、勞動與社會事務部、內政、建築及社區部以及司法與消費者保護部之意見。德國政府表示,投資人工智慧為重要計畫之一,可確保未來的創新和競爭力,以及應對諸如COVID-19疫情等危機。最重要的是,可透過人工智慧的應用扶持中小型公司。然而在進行監管時,必須注意應促進技術發展而非抑制創新。   在《人工智會白皮書-歐洲卓越與信任概念》中指出,人工智慧發展應在充分尊重歐盟公民的價值觀和權利的前提下,實現AI的可信賴性和安全發展之政策抉擇,並於整體價值鏈中實現「卓越生態系統」(Ökosystem für Exzellenz),並建立適當獎勵機制,以加速採用AI技術為基礎之解決方案。未來歐洲AI監管框架將創建一個獨特的「信任生態系統」(Ökosystem für Vertrauen),並確保其能遵守歐盟法規,包括保護基本權利和消費者權益,尤其對於在歐盟營運且具有高風險的AI系統更應嚴格遵守。此外,應使公民有信心接受AI,並提供公司和公共組織使用AI進行創新之法律確定性。歐盟執委會將大力支持建立以人為本之AI開發方法,並考慮將AI專家小組制定的道德準則投入試行階段。德國政府指出,除了要制定並遵守歐洲AI的監管政策外,應特別注重保護人民之基本權,例如個人資料與隱私、消費者安全、資料自決權、職業自由、平等待遇等,並呼籲國際間應密切合作,運用人工智慧技術克服疫情、社會和生態永續性等挑戰。另外,德國政府亦支持將人工智慧測試中心與真實實驗室(監理沙盒場域)相結合,以助於加速企業實際運用,也將帶頭促進AI在公部門之運用。   在《人工智慧,物聯網和機器人技術對安全和責任之影響報告》中則指出,歐洲希望成為AI、IoT和機器人技術的領導者,將需要清楚、可預測的法律框架來應對技術的挑戰,包括明確的安全和責任框架,以確保消費者保護及企業合法性。AI、IoT和機器人技術等新數位技術的出現,將對產品安全性和責任方面出現新挑戰,而在當前的產品安全法規上,缺乏相關規範,特別是在一般產品的安全指令,機械指令,無線電設備指令等,未來將以一致地在各框架內針對不同法律進行調修。在責任方面,雖然原則上現有法令尚仍可應對新興技術,但人工智慧規模的的不斷變化和綜合影響,將可能增加對受害者提供賠償的困難度,導致不公平或效率低下的情形產生,為改善此一潛在不確定性,可考慮在歐盟層級調修產品責任指令和國家責任制度,以顧及不同AI應用所帶來的不同風險。德國政府除了支持歐盟作法,在創新與監管取得平衡,更強調應不斷檢視產品安全和產品責任法是否可滿足技術發展,尤其是對重要特定產業的要求,甚至修改舉證責任。並可透過標準化制定,加速人工智慧相關產品與服務的開發。另外,應依照風險高低擬定分類方法,並建議創建高風險AI系統之註冊與事故報告義務,以及相關數據保存、記錄及資料提供之義務,針對低風險AI應用則採自願認證制度。

TOP