日本於「再興戰略2016」中公布今後醫療等領域徹底ICT化之相關政策

  日本政府於2016年6月2日經內閣議決「再興戰略2016」,為提升國民健康、提高平均壽命,以「世界最先進的健康國家」大篇幅宣布未來政策。其中,在「醫療、長照等領域徹底ICT化」方面之具體新措施如下:

(1)醫療等領域中導入ID制度
  日本厚生勞動省於2015年11月18日召開第10次「醫療等領域利用識別號碼制度之研究會」(医療等分野における番号制度の活用等に関する研究会),並於次月公布相關研究報告書,其內容包含導入「醫療保險線上資格審查」以及「醫療ID制度」,上述制度預計自2018年開始階段性運用,並於2020年正式實施,因此,本年度工作目標設定為,著手勾勒具體之應用系統機制,並針對實務面相關議題進行討論,自明年開始落實系統開發,整體而言,日本現階段最重要的目標就是促使醫療領域徹底數位化及標準化。

(2)透過巨量資料之利用,增進相關領域之創新
  「次世代醫療ICT基礎設施協議會」(次世代医療ICT基盤協議会策定)將延續2016年3月由其所策定之「醫療領域資料利用計畫」(「医療等分野データ利活用プログラム」,意即加強各資料庫(例如醫療資訊資料庫MID-NET)之交流並擴大相關應用。
  此外,在現行法規範下,為達成促進醫療領域資訊利用、醫藥相關研發之目標,應成立「代理機關(暫稱)」,以便於擴大收集醫療、檢驗等數據資料,並妥善管理與去識別化,日本政府於「再興戰略2016」中將此機關之設置列為次世代醫療ICT基礎設施協議會之重要工作項目,期望透過協議會對相關制度之討論,能在明年訂定出具體的法律措施。

(3)個人醫療和健康資訊之綜合利用
  日本政府期望透過不同終端設備收集關於醫療、健康等資料,並鼓勵民間依此開發新市場,但在此之前,政府必須先行建構一個能良性發展的環境。首先,為實現針對個人需求量身打造的「個別化健康服務」,保險業者、握有病歷的機構、健檢中心及可穿戴式終端設備等,得經當事人同意後收集、分析其日常健康資訊,該「個別化健康服務」之實證計畫將於本年度啟動,由地區中小企業開始。
  為強化醫療保險業者去整合運用相關資源並應用於預防、健康醫學上,政府機關應訂定一些獎勵措施,鼓勵業者將ICT技術活用於預防、健康醫學領域上。

  此外,今年度「次世代醫療ICT基礎設施協議會」還有一項重要的工作項目,即建立可記錄患者所有就醫過程資訊之系統(Peronal Health Recaord,簡稱PHR),讓相關醫療資料得以流通運用。同時,日本政府希望能在2018年達成「地區性醫療情報聯結網路」,並普及到全國各地,這麼做的目的在於,過往因為醫療資訊不流通,以及重症照護上的斷層,使身心障礙者往往難以離開長期利用的醫療環境,新政策希望讓這些患者無論遷居何處,在全國各地皆能安心接受醫療服務,而不受限於地區限制。

相關連結
※ 日本於「再興戰略2016」中公布今後醫療等領域徹底ICT化之相關政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7615&no=57&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

美國總統發布行政命令啟動創世紀任務,整合AI資源加速科學發現,鞏固AI技術領導地位

美國總統川普於2025年11月24日發布行政命令(Executive Order)啟動創世紀任務(Launching The Genesis Mission),旨在建立美國科學與安全AI平臺(下稱AI平臺),整合聯邦政府長期累積之科學資料集、國家研發及運算資源,訓練可自動化研究、加速科學發現之AI模型,強化國家安全、提高勞動生產力及研發投資報酬率,鞏固美國AI技術領導地位。 行政命令重點如下: (1)權責分配:由能源部長(Secretary of Energy)確保將執行創世紀任務所需資源統一整合至AI平臺,並訂定安全計畫。由總統科學技術助理(Assistant to the President for Science and Technology, APST)領導,透過國家科學技術委員會(National Science and Technology Council, NSTC)協調所有參與之行政部門。 (2)AI平臺之運作:提供能源部國家實驗室超級電腦、安全雲端運算環境等高效能運算資源、AI建模與分析框架、運算工具、各學科領域基礎模型,並在適法前提下,提供聯邦政府所管理之資料集、開放科學資料集或能源部生成之合成資料集。 (3)識別國家科學技術挑戰:能源部長應提交創世紀任務優先應對之國家重要科學技術挑戰清單,涵蓋先進製造、生物科技、關鍵原物料、核能、量子資訊科學、半導體與微電子學領域,經APST審查並與NSTC參與成員研議後定案。 (4)跨部門協調及外部參與:召集相關部門參與,訂定資源配置計畫整合各部門可用資料與基礎設施。提供獎補助,鼓勵私部門參與符合任務目標之AI驅動科學研究。設立研究獎學金、實習與學徒制計畫,提供AI平臺使用權及AI賦能科學發現培訓。在維護聯邦研究資產安全及公共利益最大化之前提下,建立標準化合作夥伴機制,與擁有先進AI、資料、運算能力或科學專業知識之外部夥伴合作。 行政命令就前述事項設定執行時程,且明定自發布之日起1年內及此後每年,能源部長應向總統提交報告,說明各事項之運作情況與達成成果。

運作技術成熟度(Technology Readiness Level)進行技術評估

運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言   為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。   科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。   技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。   由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明   技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。   TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用   技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段   這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險   研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。   需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位   TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。   TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論   TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。   TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。   由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。

美國商會呼籲我國政府儘速通過智財三法

  我國近年來對智財權保護不遺餘力,政府除祭出各種方案使智慧財產之觀念深入人心外,相關修法動作也持續進行,今年度經濟部智慧財產局更展開大規模的修法,並分別就各修正議題舉辦多場之法案公聽與說明會。諸此種種努力逐漸獲得國際間的肯定,美國政府也釋出善意,在今年初公布之二00五年三0一報告書中,特別將我國從「特別三0一優先觀察名單」中,調降為一般觀察名單。   據美國商會表示,台灣投資環境近年最大的改善,莫過於對智慧財產權的重視,以及落實智財權保障的有效執法機制。不過美國商會也認為,網路盜版猖獗及智財權案件審理費時冗長,將是台灣未來智財權保護的兩大挑戰。尤其在網路盜版方面,保智大隊前幾年查獲的案件中,只有2%與網路侵權有關,但今年到十一月底,比例上升80%,顯示網路盜版加劇,因此建議我國應加速規範P2P傳輸業者的立法,以遏止下載未經授權的音樂、影片,或其他受著作權保障的作品。   美國商會呼籲,為維持得來不易的成績,立法院應儘速在本會期通過智慧財產法院組織法草案、智慧財產案件審理法草案,及在著作權法新增技術立法,以規範P2P(網路點對點傳輸)業者等智財三項法案;與此同時,美國商會也建議未來智財法院的法官,應具備技術背景並體認國際投資競爭、偽藥及假農藥等公共衛生議題對於生技等創新產業發展之重要性。

TOP