2016年9月國際唱片業協會(International Federation of the Phonographic Industry,簡稱IFPI)、美國唱片產業協(Recording Industry Association of America,簡稱RIAA)及英國唱片產業協會(British Phonographic Industry,簡稱BPI)對全球最大的串流音樂翻錄網站「YouTube-mp3.org」展開法律行動,指控該網站違反YouTube的服務準則,且侵害音樂著作權。目前該案件由美國加州聯邦法院審理。
「YouTube-mp3.org」將串流音樂變成可供下載的音樂檔案,使用者只需在該網站(YouTube-mp3.org)複製貼上原YouTube的音樂影片網址,即能將其轉為MP3檔案下載使用。RIAA表示運營商透過該網站已經獲利數百萬美元的廣告收入,卻未支付任何金錢報酬給音樂家或著作權權利持有人,因此控告YouTube-mp3. org及該站負責人Philip Matesanz侵害著作權。BPI則表示,使用者得透過各種串流服務存取合法音樂,若對此非法轉載音樂的業者或行為不提出法律行動,將會影響合法的音樂串流服務。
另一方面,德國聯邦部門(German Federal Ministry ) 早在2011年時曾認定,從Youtube網站複製下載音樂為非商業之私人行為合法。而電子前線基金會(Electronic Frontier Foundation,簡稱EFF)對於英美唱片業協會要求法院消除此類型網站一事持否定看法,認為法律不應賦予著作權人或商標所有人修訂刪除網站的權力。
資訊揭露與市場競爭評估– 研析英國水平協議指引中之資訊交換 資訊工業策進會科技法律研究所 2023年09月23日 英國競爭與市場管理局(Competition and Markets Authority,CMA)於2023年8月16日發布《1988年競爭法第一章禁令適用於水平協議之指引》(Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements,以下簡稱CMA水平協議指引),以規範實際或潛在競爭者間之協議[1]。CMA水平協議指引提供事業擬定協議內容的參考,事業間於業務合作的同時,亦能符合法遵之要求,以維護市場公平競爭。 壹、事件摘要 英國CMA水平協議指引解釋競爭法之適用,尤其是《1998年競爭法》(Competition Act 1998,CA98)第1章禁止水平協議。2023年1月1日,《1998年競爭法(專業協議集體豁免)2022年指令》(SABEO)與《1998年競爭法(研發協議集體豁免)2022年指令》(R&D BEO)生效,於2023年8月16日發布之CMA水平協議指引,協助事業評估特定類型的水平協議是否受益於SABEO和R&D BEO,和遵守競爭法之相關規範[2]。申言之,CMA水平協議指引協助事業評估其所簽訂之協議內容,是否屬於法規範豁免之類型,且合乎競爭法之規定。 CMA水平協議指引說明研發協議[3]、生產協議[4]、採購協議[5]、商業化協議[6]和標準化協議[7]之適用與範例。鑒於大數據分析與機器學習需使用大量的資料;而大數據分析的結果,或機器學習的應用,將影響決策的形成,資訊交換因而更顯重要[8],CMA水平協議指引亦引導事業為合理的資訊交換。 資訊交換不僅為競爭市場的共同特徵,在一般的情形亦有利於消費者;例如資訊交換有助於解決資訊不對等而提升市場效率,事業能藉由比較最佳實踐方案,以提高內部效率;能減少庫存以節省成本,並處理不穩定的需求;或藉由演算法以開發新的產品或服務;[9]或減少搜尋成本,以提供消費者利益[10]。依據實際情況,資訊交換可以是有利於競爭,競爭中立或限制競爭[11]。換言之,競爭市場中適當的資訊交換,有助於事業降低成本,提升效率。 貳、重點說明 CMA水平協議指引第8章為資訊交換(Information Exchange),目的即在指導事業為資訊交換的競爭評估[12]。資訊交換是否會引發限制競爭之效應,取決於市場的特性,包含[13]: (1)市場透明度:越透明的市場,競爭之不確定性越小[14]。 (2)市場集中度:若市場中僅有少數事業,則易於達成共識,與控制市場偏差。若市場高度集中,則訊息的交換,將有助於事業了解競爭者的市場地位和策略,而扭曲競爭,甚而增加共謀(collusion)的風險;若市場分散,則競爭者間資訊的傳播與交換,對市場而言,可能為競爭中立或有利於競爭[15]。 (3)參進障礙:此使外部競爭者無法破壞市場中的共謀結果(collusive outcome)[16]。 (4)市場穩定度:在供需穩定的市場,亦可能有共謀的結果;而需求的波動、市場中事業內部的大幅成長、新事業的參進、顛覆性創新(disruptive innovation),均可能顯示市場的穩定度不足,需提升交流,以促進競爭[17]。 競爭對手間的資訊交換,依據共享資訊的內容、目的、法律與經濟背景,可能為侵權而應受限制。包含與競爭對手交換事業目前或未來的訂價方向、生產能力、商業策略、針對需求的規劃,對未來銷售的預測,和在特定市場上的財務狀況與經營策略[18],提供價格資料而能預測事業未來的行為,和與競爭對手交換潛在參進者所提出之計畫要點[19]。申言之,事業應避免資訊所生之侵權行為;並需考量市場的特性,以評估資訊交換對競爭之限制。 參、事件評析 CMA水平協議指引第8章,提供事業間交換資訊的相關建議。為提升資訊交換對市場的效益,以資訊內容而言,事業須考量資訊交換的目的,以及藉由收集資訊、確認資訊交換的參與者係使用其具有所有權的原始資料、使用歷史資訊、僅交換與達到目標相符且必要的資訊,而能減少具有商業敏感性質的內容[20]。換言之,事業須避免機敏資料的流通,並具有使用資料的權限。 以資訊應用的角度,事業應採取措施,以控制資訊的交換與使用,包含減少頻繁的交換,以特定團隊(clean team)或信託方式進行資訊交換,或使用資料池(data pool)以確認近用資料之所有權[21]。亦即事業須確認資料的來源,與交換資料的相對人,並能管理資料流通的過程。 綜上所論,足夠的資料量,使大數據分析的結果能充分反映市場的實際需求,事業的決策和布局亦更為準確,適當的資訊交換有助於提升事業的市場競爭力。CMA水平協議指引協助事業評估資訊交換對競爭之影響,事業之資訊管理,除內部資訊之維護外,亦包含外部資訊之交換,如資訊交換之必要性,與資訊近用之權限、方式等,或可提供臺灣事業參考。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Guidance on Horizontal Agreements, GOV. UK, Competition and Markets Authority, https://www.gov.uk/government/publications/guidance-on-horizontal-agreements (last visited Aug. 23, 2023). [2]CMA COMPETITION & MARKETS AUTHORITY, Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements, CMA184 (Aug. 2023), 6, at 6, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1178791/Horizontal_Guidance_FINAL.pdf (last visited Sept. 01, 2023). [3]Id., at 35 below. [4]Id., at 83 below. [5]Id., at 124 below. [6]Id., at 145 below. [7]Id., at 203 below. [8]Id., at 165. [9]Id. [10]Id., at 166. [11]CMA Competition & Markets Authority, supra note 8. [12]Id. [13]Id., at 188. [14]Id. [15]Id., at 188-189. [16]Id., at 189. [17]Id. [18]Id., at 190. [19]Id., at 191. [20]Id., at 201. [21]Id.
YouTube網站被控侵害著作權美國新聞記者兼直昇機飛行員 羅伯特爾( Robert Tur )於 7 月 14 日 控告近來迅速竄紅的影片分享網站 YouTube 侵害著作權,特爾指稱 YouTube 網站鼓勵用戶拷貝受到保護的影片資料,此舉違反了 2005 年一項美國最高法院的判決( MGM v. Grokster ) ,該判決認為 P2P 軟體業者若蓄意鼓勵或誘使客戶從事線上盜版行為,即可能構成著作權侵害。 羅伯特爾聲稱,他所拍攝的 1992 年洛杉磯暴動事件以及 1994 年高速公路上追捕辛普森的直昇機空拍報導影片,未經他的同意就被上傳並在 YouTube 網站上廣為流傳。 特爾亦聲稱, YouTube 網站從他的作品中獲利,同時也侵害了他的著作權,因此提出了 15 萬美元賠償要求並要求網站不得再使用他的影片資料。 YouTube 網站發表聲明指出,自獲悉特爾提出告訴的消息後,網站就已經將他的影片撤下,另一方面認為網站的行為完全符合「一九九八年 數位千禧年著作權法案」﹙ Digital Millenium Copyright Act of 1998 ﹚之規定,應受到該法案免責條款的保護 。
員工分紅市價八折課稅現行促進產業升級條例第19條之1規定,為鼓勵員工參與公司經營,並分享營運成果,公司員工以其紅利轉作服務產業增資,而取得新發行記名股票,採「面額」課徵所得稅。而依據所得基本稅額條例第12條第1項第5款規定,對於員工「可處分日次日時價」與股票面額之間的差額部分,另計入最低稅負制課稅。 台聯黨團認為現行促產條例第十九條之一關於員工分紅配股以面額課稅規定,使不少高科技產業上市櫃公司,利用促產條例優惠,壓低員工本薪,以分紅配股吸引人才,造成營業成本低列,將薪資費用轉嫁給股東,扭曲財報,使高獲利的高科技產業和薪資紅利豐厚的科技人租稅優惠多繳稅少,造成政府稅收短缺,因而提出修改案,改由「市價的八成」課徵所得稅。立法院 經濟能源委員會初審通過修正促進產業升級條例,將員工分紅配股由「面額」改依「市價八折」課稅,上市櫃公司市價以配股發放日前一個月均價為準,未上市櫃公司則以配股發放日淨值為準,此規定 引發高科技業者反彈,並向經濟部反映。 目前員工分紅改為市價的八成課稅雖通過委員會初審,但提交下次院會討論前,須經朝野協商。經濟部表示,此案初審後尚需經過立法院政黨協商,再交由院會決定。員工分紅配股課稅方式改變,應要有配套才合宜(例如一定之緩衝期間讓業者調整員工薪資結構),若在配套未完成前就做決定,是比較不好的決策。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)