美國總統選舉於11月8日舉行,數州針對大麻合法化與否一併進行公民投票,針對娛樂用大麻(Recreational Maijuana)議題舉辦公投共有五州,分別為加州、內華達州、亞里桑那州、緬因州以及麻州;而針對醫療用大麻(Medical Marijuana)議題舉行公投則有四州,係佛羅里達州、阿肯色州、北達科他州以及蒙大拿州,其中蒙大拿州原已開放醫療用大麻,本次公投案係放寬現行法規之限制。公投結果顯示,除亞里桑那州公投案未通過外,其餘各州公投案皆已通過。
民調公司蓋洛普(Gallup)於十月公布之民調顯示,美國民眾支持大麻合法化比例,已從1969年的12%爬升至目前的60%。本次各州公投案通過後,將對美國聯邦政府近80年的大麻禁令產生極大壓力。就經濟層面觀察,美國研究機構ArcView Market Research研究報告統計,全美目前合法管道銷售大麻金額從2014年的46億美元成長至54億美元,而作為全美最大經濟體的加州,依投資分析公司Cowen and Company分析,該州本次公投案通過將使全美大麻產業成長三倍,甚至於2026年市場規模將成長至500億美元。大麻合法化後,依「加州大麻業者協會」(California Cannabis Industry Association)估計,將為加州州稅增加十億美元的收入。根據統計,此一趨勢中,推動大麻合法化一方投入約兩千兩百萬美元支持加州公投案,而反對方則投入約兩百萬美元。
三菱電機informationsystems公司所研發用於圖書館的系統封包MELIL/CS造成引進系統的圖書館發生個人資訊外洩與Web館藏檢索系統當機的系統障礙。從2010年7月到9月因系統障礙,總共有3間圖書館,共2971人的姓名、出生日期、住址、電話及圖書名稱等個人資料外洩。 有關個人資料外洩的經過,是因為三菱電機informationsystems公司在研發MELIL/CS系統時,先在引進系統的圖書館進行系統測試,於測試之後再將系統程式帶回公司修改,此時就不知情的將存有個人資料的程式帶回公司,也把這些資料登錄到產品的原始碼上。因此將進行測試的2間圖書館使用人約210人的個人資料登錄於該產品的原始碼上。 但發生個資外洩的直接原因更在於負責三菱電機informationsystems公司產品運作、維修的銷售伙伴千代田興產公司,該公司所設置的伺服器完全沒有設定權限區分,甚至不需密碼就可以連接該公司伺服器存取資料。因此發生第三人進入該公司伺服器,下載3個引進該系統圖書館約3000人的個人資料。 另外對於Web館藏檢索系統當機的發生,是因為圖書館使用人為了獲取圖書館新增加館藏圖書的資訊,以自動蒐集資訊程式直接存取館藏資料庫所發生。三菱電機informationsystems公司當初在設定網路連接圖書館系統,是以一次存取可以連接10分鐘的方式,所以只要以連接頻率高的機械性存取,只要超過資料庫的同時連接數的設定數值,就會發生存取障礙。 對於三菱電機informationsystems公司系統設計失當及千代田興產公司未設定伺服器存取權限所造成個人資料外洩事件,因為這兩家公司都是屬於財團法人日本情報處理開發協會(JIPDEC)的取得隱私標章企業,所以由JIPDEC依據隱私標章營運要領中的「有關賦予隱私標章規約」第14條規定,各處以由2011年1月起3個月的隱私標章停權處分。
歐盟執委會啟動《關於標示與標籤AI生成內容之行為準則》之相關工作,以協助生成式AI之提供者與部署者履行其透明度義務2025年11月5日,歐盟執委會啟動《標示與標籤人工智慧生成內容之行為準則》(a code of practice on marking and labelling AI-generated content,下稱行為準則)之相關工作,預計將於2026年5月至6月間發布行為準則。此行為準則與《歐盟人工智慧法案》(EU AI Act)之透明度義務規定相關。這些規定旨於透過促進對資訊生態系的信任,降低虛假訊息、詐欺等風險。 《歐盟人工智慧法案》第50條第2項及第4項之透明度義務,分別規定 1. 「『提供』生成音檔、圖像、影片或文本內容的AI系統(包括通用AI系統)」的提供者(Providers),應確保其輸出係以機器可讀的形式標示(marked),且可被識別屬於AI所生成或竄改(manipulated)的內容。 2. 「『使用』AI系統生成或竄改以構成深度偽造之影像、音訊或影片內容」的部署者(Deployers),應揭露該內容係AI所生成或竄改。 前述透明度義務預計於2026年8月生效。 後續由歐盟AI辦公室之獨立專家透過公眾資訊與徵選利害關係人意見等方式,推動起草行為準則。此行為準則不具強制性,旨於協助AI系統提供者更有效地履行其透明度義務,且可協助使用深偽技術或AI生成內容的使用者清楚地揭露其內容涉及AI參與,尤其是當向公眾通報公共利益相關事項時。 AI應用蓬勃發展,同時AI也可能生成錯誤、虛構的內容,實務上難以憑藉個人的學識經驗區分AI幻覺。前文提及透過標示AI生成的內容,以避免假訊息孳生。倘企業在資料源頭以標示等手段控管其所使用之AI的訓練資料,確保資料來源真實可信,將有助於AI句句有理、正向影響企業決策。企業可以參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從資料源頭強化數位資料生命週期之管理。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
世界經濟論壇2020年十大新興科技報告,與健康和環境相關之前瞻科技發展備受矚目世界經濟論壇(World Economic Forum, WEF)於2020年11月10日發表「2020年十大新興科技報告」(Top 10 Emerging Technologies 2020),報告中提出10個近年出現,且被認為在未來5年內最具有正面改變社會潛力的新興科技,並說明除了關注這些科技帶來的改變外,也應關注其引發的風險。 2020年全球最密切關注的議題為健康與氣候變遷,也因此2020年被認為具有發展潛力的新興技術均與這兩個議題有關,包含:(1)無痛注射與測試用的微針技術(Microneedles);(2)太陽能化學(Sun-Powered Chemistry)利用可見光將二氧化碳轉換為普通材料,可作為合成藥物、清潔劑、化學肥料和紡織品的材料;(3)虛擬患者(Virtual Patients),替代人類做人體臨床試驗,比一般試驗更快更安全;(4)空間計算(Spatial Computing)以強化虛擬生活和現實的連結;(5)數位醫療(Digital Medicine)應用程式之發展可以診斷甚至治癒疾病;(6)電動飛航(Electric Aviation)裝置,例如電動推進器可以清除直接碳排放(direct carbon emissions),減少九成的燃料成本、五成維護成本和七成噪音汙染,降低整體航空旅程環境污染並提高效率;(7)低碳水泥(Lower-Carbon Cement)的發展作為氣候變遷下的新興建築材料;(8)量子感測(Quantum Sensing)做為高精準度計算方式,將於未來三到五年進入市場,並首重用於醫療和國防應用產業上;(9)新興零碳能源如綠氫(Green Hydrogen),可補充風力和太陽能;(10)全基因合成(Whole-Genome Synthesis)作為下一代細胞工程(cell engineering)尖端科技,使未來醫學得以治癒更多遺傳疾病。 報告中指出,雖然這些新興技術具有改變社會和產業的潛力,但卻無法確保技術本身是否能被妥善使用(Good is not guaranteed)。首先,這些技術仍需要龐大資金以達到成熟度和可利用的價格點(price point),才能與相關產業達成整合化、規模化。此外面對這些新興科技,決策者必須迅速針對可能引發的風險提出對應策略,例如數位醫療在手機應用程式上會引發政府許可、資料利用、隱私等問題。因此,政策與產業如何協作,使用相關科技、限制濫用並控制技術中風險等,是面對是類新興科技應積極考量的方向。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。