以「公私夥伴關係(PPP)」發展科技之作法

  近來常聽聞各國以公私夥伴關係(Public-Private Partnership, PPP)之模式發展產業科技,PPP故名思義,係指結合公私部門之力量,以共同達成公共政策目標之合作模式。公部門可借重私部門的專業、經驗與品質,使其服務更有效率,私部門也可得到政府與政策之支持。

  如今科技進步程度往往可代表ㄧ國之競爭力,惟科技研發需投入大量成本,因此各國多有針對科研補助之相關政策,從早年的單方補助,到如今強調公私合作進行科研的PPP模式。各國亦提出各種產官學合作研發的模式或組合之立法或相關政策。例如成立獨立非營利法人讓各項研發活動進行更方便、研究設施設備共享更容易的日本「技術研究組合」、芬蘭之SHOKs。荷蘭近來亦大力推行PPP研發之策略。德國之高科技領先戰略計畫( Spitzencluster-Wettbewerb)亦以區域聚落(該區域聚落即包含產業界、大學及其他相關學術機構)為單位,藉競爭給予補助的方式,促成該地區產官之緊密合作。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 以「公私夥伴關係(PPP)」發展科技之作法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7650&no=57&tp=5 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
美國專利商標局月底啓動「三路」試行計畫(“Triway”Pilot Program)

  美國專利商標局(USPTO)在2005年11月,與歐洲專利局(EPO)及日本專利局(JPO)之三邊會前會上,提出了一個簡稱為「三路」(Triway)的檢索共享計畫,該計畫希望能使三局的檢索技術發揮槓桿效果,進而能使專利申請者及各該專利管理當局受惠。   三局其後在2007年11月的三邊會前會上同意先期進行有限的試驗計畫。   「三路」的基本構想乃希望透過縮短時效來推廣資源分享,同時能使申請者及各該管理當局在很短的一定時間內取得三局的檢索結果,進而使申請者及各該局有機會能分享及考量所有的檢索結果,同一協助改善各該局對同一專利申請者專利審定之品質。   在「三路」試行計畫下,各該局對於在巴黎公約下之同一專利申請將適時提早進行檢索,且各該局的檢索結果將由三局共同分享以減少各該局的檢索及審查工作量。   三局同意「三路」試行計畫之試行對象限於在美國專利商標局首次提出申請者,並限於一百個試行專利申請案,試行計畫將在明年的同一時間結束,或在接受一百個試行專利申請案後提前結束。

開原碼授權 印度要走自己的路

  印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。    Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。

美國奧克拉荷馬州修正《個資事故通報法》,擴充個資定義範圍並強化通報機制

美國奧克拉荷馬州修正《個資事故通報法》,擴充個資定義範圍並強化通報機制 資訊工業策進會科技法律研究所 2025年07月22日 現行我國關於非公務機關就個資事故進行通報之規定,散落於各中央目的事業主管機關制定之各業別個人資料檔案安全維護管理辦法或相關辦法中,且前揭各辦法對於通報之標準不盡相同。各國主管機關紛紛強化個資治理法制,而美國奧克拉荷馬州修正關於個人資料定義、適當防護措施及個資事故通報機制等事項,以建立更完善之規範。 壹、事件摘要 美國奧克拉荷馬州議會業於2025年5月20日通過第626號法案(Senate Bill 626)[1],修正《個資事故通報法》(Security Breach Notification Act)[2],其目的係為補充現行治理規範之不足,修正重點涵蓋:擴充法定用詞之定義,針對「個人資料」(Personal Information)與「適當防護措施」(Reasonable Safeguards)等條文予以補充與增列;強化個資事故(Breach of the security of a system)之通報機制與設立豁免條款,並釐清與其他法規間之適用關係;以及修訂違法情事之民事裁罰。此外,本次修法亦明定,若機構或個人已採取適當防護措施,得作為民事訴訟中之抗辯理由。本法將自2026年1月1日起正式生效,並適用於自該日起所發現、判定或通報之個資事故,相關單位應即早進行法遵準備,以確保制度落實。 貳、修法重點 本次修法主要包含三大核心面向,簡要說明如下: 一、擴充法定用詞之定義 (一)個人資料 於現行法規對個人資料之定義下,再增加新資料類別: 1.與驗證碼、存取碼或密碼結合使用時,可用以登入特定個人金融帳戶之專屬電子識別碼(Electronic Identifier)或路由代碼(Routing Code); 2.用以辨識特定自然人之獨特生物特徵資料,例如指紋、視網膜或虹膜影像,或其他具體實體或數位形式之生物辨識資料。 (二)適當防護措施 適當防護措施係指,為確保個人資料安全而考量組織或機構之規模、產業別、以及保有之個資類別與數量所制定之政策及作業實務。此概念包括但不限於:進行風險評估、建立技術面及實體面之多層次保護機制、對人員實施教育訓練,及建立個資事故應變計畫等。 二、強化事故通報機制與設立豁免條款 本法要求於發現系統個資事故並已通知受影響之當事人後,應於60日內向州檢察總長(Attorney General)提交書面通報,載明涉及之個人資料類別、事故性質、受影響人數、預估之財務損失、所採行之適當防護措施等必要內容。惟若事故影響人數低於500名州民,或事故發生於徵信機構且影響人數未達1,000人,則可免除向檢察總長通報之義務。 此外,本法明確規範,若特定機構已依據其他法律,如《奧克拉荷馬州醫療資安保護法》(Oklahoma Hospital Cybersecurity Protection Act of 2023)或聯邦《健康保險可攜及責任法》(Health Insurance Portability and Accountability Act of 1996)等履行相關通報義務,則視為已符合本法之要求。 三、民事裁罰 本法明定,民事罰鍰之裁量將審酌事故規模、事故發生後組織之因應作為及是否履行事故通報義務等因素而定,以確保裁量之比例原則。裁量情形說明如下: 1.若機構已採行適當防護措施且依法進行事故通報者,得免除民事責任; 2.若未採取適當防護措施,惟仍依規定完成事故通報者,則須負擔實際損害賠償責任並處以最高75,000美元罰鍰; 3.未落實適當防護措施與事故通報法定義務者,最高處以150,000美元罰鍰。 參、事件評析 本次修法可見奧克拉荷馬州就數位時代資安威脅所採行之積極因應作為,其修正重點包含:擴充個人資料之定義並明定適當防護措施之內容,俾利降低企業法遵成本及法律適用之不確定性;強化事故通報機制並設置合理豁免條款,以確保資訊透明度;於罰則規範中明定民事罰鍰之裁量,應審酌事故規模及是否履行事故通報義務等因素,以符合比例原則。 有鑑於本法修正後所課予之法定義務,建議企業應採行下列因應措施:(1)全面盤點所保有之個人資料,尤應注意新增納管之電子識別碼及生物特徵等資料;(2)檢視並強化現有防護機制,確保符合適當防護措施之要求;(3)建立標準化通報應變程序;(4)強化教育訓練。此外,企業宜定期檢視法規動態,以確保持續符合法規要求。 [1] Bill Information for SB 626, OKLAHOMA STATE LEGISLATURE, http://www.oklegislature.gov/BillInfo.aspx?Bill=sb626&Session=2500 (last visited June 1, 2025). [2] BILL NO. 626, OKLAHOMA STATE LEGISLATURE, https://www.oklegislature.gov/cf_pdf/2025-26%20ENR/SB/SB626%20ENR.PDF (last visited June 2, 2025).

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP