歐盟「開放網路規則」實施指引

  歐盟會員國電子通訊傳播監理機關組織(Body of European Regulators for Electronic Communications, BEREC)於2016年8月公布「歐盟會員國網路中立規則監理機關執行指引」(BEREC Guidelines on the Implementation by National Regulators of European Net Neutrality Rules)。本執行指引係依歐盟於2015年11月通過之「有關開放網路近用並修正全球服務與使用者有關電子通訊網絡與服務之第2002/22/EC號指令以及於歐盟境內於公用行動通訊網絡進行漫遊之第531/2012號規則」的第2015/2120號規則(下稱「開放網路」規則)第5條第(3)項所訂定,用以作為歐盟各會員國相關監理機關於實施「開放網路」規則時之參考依據。

  以網路中立性所蘊涵之不歧視原則為例,「開放網路」規則第3條第3項第一段規定,「網際網路近用服務提供者於提供相關服務時,對所有流量應平等對待(treat all traffic equally),而無歧視、限制、或干擾,且亦不論係對於發送方與接收方、所近用或散布之內容、所使用或提供之應用或服務、或所利用之終端設備」。對此,執行指引明確表示,不歧視原則是網際網路服務提供者在提供網路近用服務時之義務,且對於本項之違反,亦將同時構成對於終端使用者受「開放網路」規則第3條第1項所保障權利之侵害。不過執行指引也強調,各會員國相關監理機關應該注意到,所謂的「平等對待」不必然意味著所有終端使用者都將體驗相同的網路效能或服務品質。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟「開放網路規則」實施指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7671&no=55&tp=5 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
何謂不實施專利實體(Non-Practicing Entity,NPE)?

  所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟電信改革:歐盟委員會持續對三份研究做評論

  歐盟委員會在 2006 年 8 月 25 日公布之三份獨立學術性研究,被認為是對現正持續進行之 2002 年歐盟電信規則的檢討具深遠的影響。稍早在 6 月 29 日 ,歐盟委員會發佈了針對電子通訊法規架構的檢視訊息、促進就業文件和一份影響評估( IP/06/874 ),在這些文件中含括多項有關有效率利用頻譜資源、促進歐盟市場競爭、建立無線通訊服務單一市場等的政策性提案。而在 2006 年 8 月 25 日出版的研究報告,目的則在處理歐盟電子通訊檢討過程中的主要議題:歐盟電子通訊部的成長和投資、電子通訊市場的法規變革及競爭狀態。雖然這三份研究報告對歐盟委員會並無拘束力,不過對即將在十月份截止之歐盟電信規則的公眾諮詢意見書上,將有助益。   歐盟資訊社會和媒體委員 Viviane Reding 女士認為,對 2006 歐盟電信規則的重新檢視,是歐洲競爭力、投資和成長是重要的關鍵。如果想要促進一個具競爭性、以知識為主的歐盟經濟體系,完備電子通訊內在市場、擴大跨界經營的競爭,以及提升無線通訊頻譜利用的最大效益,均需最優先考量。

中國大陸法院認定AI創作可受著作權法保護

中國大陸法院認定AI創作可受著作權法保護 資訊工業策進會科技法律研究所 2023年12月05日 近期生成式AI的工具運用,無論是生成文字的ChatGPT、生成圖像的Midjourney及生成影片的Pictory,技術一日千里,蓬勃發展;其應用已逐漸進入一般人的生活領域網,而且產生AI產出的侵權爭議,滋生運用AI創作的生成內容是否可主張著作權之疑義。我國經濟部智慧財產局於今(112)年6月以經授智字第11252800520號令 函指出--「AI利用人如係單純下指令,並未投入精神創作,由生成式AI模型獨立自主運算而生成全新內容,該AI生成內容不受著作權法保護。」採取否定見解 。不過其前提係「單純下指令,並未投入精神創作」,適於日前中國大陸北京互聯網法院於11月27日以(2023)京0491號民初11279號民事判決 認為如可認定屬「非機械性智力成果」,運用AI生成的圖片仍可受著作權保護。 壹、事件摘要 本案起因於原告將其使用開放原始碼的Stable Diffusion以輸入提示詞的方式,生成「春風送來了溫柔」之少女人像圖,並發布於網路平台。原告於事後發現,被告將該圖原有的原告署名浮水印(平台所發予的用戶編號)截除,並使用於其在網路上發布的文章中使用該圖做為插圖。原告因此提起姓名表示權與網路傳輸權的侵權訴訟。 被告主張系爭圖片具體來源為網路取得,已無法識別來源與浮水印,並不能確定原告是否享有圖片之權利;而且其所發布的主要內容為原創詩文,並非系爭圖片,亦未做為商業用途,並無侵權故意。 原告於本案中提出生成過程的影片佐證資料,北京互聯網法院認定呈現下列具體生成(取捨、選擇、安排與設計)步驟: 一、選擇前述軟體程式提供的模型,初步決定畫面最終生成的可用素材,決定作品的整體風格、類型。 二、為展現一幅在黃昏的光線條件下具有攝影風格的美女特寫所需,輸入有關類型、主體、環境、構圖、風格的提示詞,包括:「超逼真照片」與「彩色照片」類型;「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節;「外景」、「黃金時間」與「動態燈光」之環境提示;「機前瀏覽(眼看鏡頭)」、「酷姿勢」為構圖提示;「底片紋理、膠卷仿真」等風格提示。另並進行輸入反向指令提示,包括:繪畫、卡通、動漫等要求,以避免此類風格出現於生成內容。 三、進行相關參數設定,以及多次試驗的調整,包括採樣方法、清晰度、圖形比例等不同參數設置。 貳、重點說明 北京互聯網法院根據原被告的陳述與提供的證據資料,認定原告的AI生成圖構成作品(受著作權保護),且原告享有該作品之著作權: 一、法院首先提出四個認定是否構成作品的判斷要件:1.是否屬文學、藝術、科學領域;2.是否具有獨創性(原創性);3.是否具有一定的表現形式;4.是否屬於智力成果。同時認為本案須審酌的重點在於獨創性與是否屬於智力成果。 二、關於「是否屬於智力成果」,法院認為從原告構思圖片到最終圖片選定為止,原告進行了一定的智力投入,例如設計人物的呈現方式、選擇提示詞、安排提示詞的順序、設置相關的參數、選擇符合預期的生成內容,已具備本要件。 三、至於「是否具有獨創性」,法院認為非有智力投入的都具有獨創性,如「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,則屬「機械性的智力成果」,並不具有獨創性。但運用AI生成過程若能「提出的需求與他人越具有差異性,對畫面元素、布局構圖描述越明確具體」就越能呈現人作者的個性化表達。因此,法院認定原告雖然AI創作沒有使用畫筆,也與過去使用繪圖軟體不同,但原告對於人物及其呈現方式透過提供進行設計,並透過反覆的修改參數、調整修正,這過程呈現原告的審美觀,而亦可見不同人使用該AI工具可以自行生成不同的內容,故該作品「係由原告獨立完成、體現了原告的個性化表達」。 四、針對原告是否享有該圖作品的著作權,法院採肯定看法認為: 1.雖原告使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但委託與AI工具區別在於委託人具有自主意志,AI工具本身並沒有,不是自然人或法人等民事主體,依法(中國大陸著作權法)該AI工具本身無法成為作者而享有著作權。 2.事實上仍是人以工具進行創作,而工具的設計者亦已於GitHub論壇的授權條款中揭示該工具的授權人並不對使用者所生成的內容主張權利。 3. AI工具的設計者本身並沒有創作該圖的意願,亦無預先設定後續生成內容,未參與創作的生成過程,其訓練雖然是投入相當大的心力,但投入的是在工具的創建而非特定內容的生成。 參、事件評析 本案最終由原告獲得勝訴,法院認定被告侵害其姓名權與公開傳輸權,雖然法院認為使用AI工具的行為類如委託他人設計,於委託時該是受託人為創作人,但也認為AI工具本身並沒有自主意志,不是可享有著作權利的主體,依法(中國大陸著作權法)該AI工具的使用本質仍是人以工具進行創作,而工具的設計者並沒有生成內容的意思與投入,故應由多次修改呈現其個人表達念的使用者取得著作權。本文認為可以從此判決中獲得下述啟示: 一、對初次生成結果進行修改指令是取得原始性的重點:現今AI工具的使用,如要求程度不高,其實只須簡單的指令,例如生成一個xx的圖片,即可產生一張可用的圖片,但此時AI生成的內容僅是「按照一定的順序、公式或結構完成的作品,不同的人會得到相同的結果」,屬「機械性的智力成果」,將不具有獨創性。 二、反覆修改、調整參數呈差異化,即便是AI生成亦獲保護:運用AI生成過程應力求與他人的使用具有差異性,對畫面元素、布局構圖描述越明確具體,越能呈現人個性化表達,始能取得著作權保護。而反覆的修改參數,例如視線角度、光影呈現方式、表情姿勢要求等圖片的細節呈現,強化呈現個人化的思想、表達、創作投入,即可獲得著作權保護。 三、AI生成世代的著作保護更須重視創作歷程的存證:本案原告取得勝訴的重要關鍵,在其於本案中提出生成過程的影片佐證資料,證明其使用過程的需求(在黃昏的光線條件下具有攝影風格的美女特寫)、取捨(輸入反向指令提示,包括:繪畫、卡通、動漫等)、選擇(「日本偶像」主體並詳細描繪臉部皮膚、眼睛、辮子等細節)、安排與設計(「機前瀏覽(眼看鏡頭)」、「酷姿勢」等構圖)步驟呈現其多次試驗的調整的事實證明,若無此佐證影片,單依生成結果難以證明其創作投入,訴訟結果可能會變成敗訴。 四、AI生成工具的使用須注意生成結果的權利歸屬約定:即便本案針對原告使用AI生成工具的生成結果可受著作權保護,但原告是否享有該圖作品的著作權,法院再次確認工具的設計者的授權條款並沒有對使用者所生成的內容主張權利,若該條款約定使用者不依法可享有的內容權利,使用者的權益將受影響,是必須特別要注意的事情。 如同北京互聯網法院在判決中提及的,在照相機出現之前,人們需要高度的繪畫技術才能再現物體形象,但即便出現智慧型手機亦不影響我們運用它產生有獨創性的作品而構成攝影著作。可預見的未來AI技術會越發達,人的投入會越少,但這並不影響著作權制度鼓勵作品創作的立法意旨,只要有創作性的投入,即便只是反復的指令下達,也仍是受著作權法保護的獨特的個人作品。 [1]詳見臺灣智慧財產局頒布函釋說明生成式AI之著作權爭議,理慈國際科技法律事務所,https://www.leetsai.com/%E8%91%97%E4%BD%9C%E6%AC%8A/interpretation-released-by-taiwans-ipo-to-clarify-copyright-disputes-regarding-generative-ai?lang=zh-hant,最後瀏覽日期2023/12/04。該文提及的智慧財產局令函,本文未能於於該局之著作權函釋系統中檢索到。 [2]該局111-10-31以電子郵件1111031號令函提及有關人工智慧(AI)的創作,如是「以人工智慧為工具的創作」,也就是人類有實際的創意投入,只是把人工智慧(例如:繪圖軟體)當作輔助工具來使用,在這種情形依輔助工具投入創作者的創意而完成的創作成果仍可以受著作權保護,著作權則由該投入創意的自然人享有,除非有著作權法第11條及第12條之情形。 [3]判決全文詳見https://mp.weixin.qq.com/s/Wu3-GuFvMJvJKJobqqq7vQ,最後瀏覽日期2023/12/04。

TOP