人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。
AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。
「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點:
一、 資料側寫之公平性與透明性(fairness and transparency in profiling);
二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性;
三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策;
四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險;
五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性;
六、 資料最少化與目的限制(data minimization and purpose limitation);
七、 資料當事人之權利行使(exercise of rights);
八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。
ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
2022年11月美國OpenAI公司推出人工智慧大型語言模型ChatGPT,提供全球使用者透過輸入文本方式向ChatGPT提出問題,雖營業秘密不需絕對保密,惟是否會「因向ChatGPT揭露營業秘密而使營業秘密喪失了秘密性」? 依OpenAI公司「非API訪問數據政策」規定,ChatGPT透過OpenAI公司的AI訓練人員審核「使用者上傳至ChatGPT的資訊」,提供ChatGPT反饋,強化ChatGPT進行有效的學習,讓ChatGPT模仿人類語言回覆使用者所提出的問題。在AI訓練人員未將「使用者上傳至ChatGPT的資訊」交由ChatGPT訓練、學習前(上次訓練是在2021年9月),此聊天內容不會成為ChatGPT給其他使用者的回答,此時資訊對於公眾仍具秘密性。依據ChatGPT的使用條款第5(a)條之單方保密義務規定:「OpenAI公司、其子公司及其他第三方公司可能賦予使用者『機密資訊的接觸權限』,但使用者僅限於使用條款所允許的服務中使用該些機密資訊,不得向第三方揭露該機密資訊,且使用者至少應採取合理的注意保護該機密資訊。所謂機密資訊係指OpenAI公司、其子公司及其他第三方公司(1)指定的非公開資訊,或(2)合理情況下,被認定為機密資訊者,比如軟體、規格及其他非公開商業資訊。」。即ChatGPT對於使用者輸入的聊天內容不負保密義務。 公司將程式碼、會議紀錄等敏感資訊與ChatGPT共享,不必然屬於「因揭露營業秘密而使營業秘密喪失秘密性」,考量訓練數據量大,秘密性取決於周遭環境與揭露性質,例如: 1.揭露的資訊類型,比如飲料配方可能會比客戶名單更容易取得。 2.揭露的環境,比如競爭對手、大眾是否能提出具體問題,以致能取得他人聊天內容的營業秘密。 為在ChatGPT的趨勢下確保營業秘密的秘密性,建議企業採取的管理策略如下: 1.透過「資訊分類」以識別可共享的資訊。 2.審核涉及敏感資訊的協議、公司政策及供應商契約。 3.採取實體、數位的資訊保密措施,並留意尊重員工隱私,比如限制接觸某些網站或應用程式,應留意員工的手機是否能繞過此限制。 4.建立公司保密文化,如透過公司培訓、新人入職教育訓練,定期提醒其應負擔的保密義務。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
淺談我國能源關鍵基礎設施資通訊安全法制建構之重要性--以歐盟及德國智慧電表布建發展為例 德國未來中型企業行動計畫 (Aktionsprogramm Zukunft Mittelstand)德國聯邦經濟暨能源部(Bundesministerium für Wirtshaft und Energie)、德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)、德國工業與商務部(Deutsche Industrie- und Handelskammertag)及德國工藝中心(Zentralverband des Deutschen Handwerks)針對共同之目標擬定中型企業發展政策。該規劃於2015年7月23日柏林提出。該規劃重點為以下五個方針: 1. 企業精神培育(Gründergeist): 自1995至2014年德國新創企業的成長銳減30%。為要克服此問題,應讓德國學童在學校時就有「創業家」此一職涯選項。年輕的新創企業需要持續提升與企業合作與互動,並給予創新之顧問補助,像是新創顧問諮詢上的服務(該計畫名稱為Gründer Coaching Deutschland)。針對目前已經成立之中小型企業,相關補助及服務將自2016年會提出。 2. 數位化進程(Digitalisierung): 為提升中型企業的科學技術轉移,透過該計畫預計將在今年全德國新設立至5座技轉中心(Technologietransfer)。透過該中心,各個企業及工藝業者可得取有關產業面現狀發展、新興科技及商業模式的最新訊息,為讓其裝備成具數位化能力的業者。 3. 融資(Finanzierung): 透過歐盟投資及歐洲復甦基金(ERP/EIF)新興政策之發佈,將注入50億歐元用於輔助快速成長、資本集中之企業,以3至4百萬歐元的幅度做補助。此透過與歐盟投資銀行共同聚集的資金,將於2015年提供給企業申請。此次融資政策係歐盟投資及歐洲復甦基金從10億提升至17億歐元。 4. 勞工支配(Fachkräfte): 德國勞工的質量與優勢將透過「聯盟教育培訓計畫2015-2018(Allianz für Aus- und Weiterbildung 2015-2016)」做提升。每位年輕學子在就學期間,就應透過學校的輔助認清其就業路線,以助未來專業領域培訓及發展。「輔助中小型企業得取切合相關職業培訓及外來勞動力引入」補助計畫導入,目的亦係為讓德國勞動力更具優勢及競爭力。 5. 行政成本降低(Bürokratieabbau): 透過減免官僚程序法(Bürokratieentlastungsgesetz)的導入,將針對未來企業會計、紀錄、統計數據公開及回報的要求進行修改。此一法的導入將可讓德國中型企業7.44億歐元行政成本的減免。為了讓新創企業能夠更容易的開始營運,政府部門亦將更進一步的與業者接觸互動並連結,輔助新創企業中遇到創業程序上的服務及指導。透過相關行政程序的電子化管理,將可讓德國及至歐盟透過該新的管理標準省去過多的行政成本,並優化創業流程。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。