「地方創生」之概念源於2014年日本安倍內閣所提出的地方治理新模式,又稱「激勵地方小經濟圈再生」政策(ちほうそうせい),其施政重點主要為解決三大問題:人口高齡化和負成長造成的勞動力人口的減少、人口過度集中都會區(尤其是東京)以及地方人口外流以致人力資源不足而使地方經濟發展面臨困境之情形。 自2008年以來,日本人口開始加劇下降,導致消費和經濟實力下降,成為日本經濟和社會的沉重負擔。為解決該情況,國家與地方合作對地區發展持續落實、檢討、修正相關政策。政策原則為自立性、未來性、區域性、直接性、結果導向;政策內容亦稱為地方創生三支箭(地方創生版・三本の矢),包含: 資訊支援(情報支援):推廣區域經濟分析系統(Regional Economy Society Analyzing System, RESAS),使各地區能對產業、人口、社會進行必要的數據分析,並能依據分析結果解決地方問題。 人才支援:維持地方生活在地化、就學在地化、服務在地化,並派駐國家公務員至小規模的地方政府機關,輔佐地方機關首長。 財政支援:補助地方創生政策執行、補助地方基礎建設、施行地方稅制改革。 地方創生之目標,在於鼓勵日本國民維持在當地工作,為地區創造新人潮,並使地方年輕人能在家鄉安心結婚育兒,此外,讓各地結合地理及人文特色,發展出最適合地方的產業,中央和地方持續合作以實現地方政府的永續發展目標。
新加坡個人資料保護委員會發布資料保護專員之職能與培訓準則新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2019年7月17日發布資料保護專員之職能與培訓準則。基於新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)明文規範非公務機關必須設立至少一名資料保護長(Data Protection Officer, DPO),負責個資保護政策之制定落實、風險評鑑及個資事故處理等工作。為了使資料保護專業人員增強能力並於企業組織有效履行其職責,新加坡個人資料保護委員會就此特別發布此準則,將資料保護專員分為三種工作職能,九項專業能力,進而規劃相關培訓課程。 此準則使企業組織能就工作職能聘僱合適之資料保護專員,亦使相關專業人員能掌握清晰之職業生涯,確定自我能力與培訓課程之落差,進而調整有效實施組織之個人資料保護管理政策與流程。其分為資料保護專員、資料保護長、區域資料保護長,依據工作職能與職責區分如下: 一、 資料保護專員 需監視與評估組織之個人資料保護管理政策與程序,並確保其遵循新加坡個人資料保護法。 識別個人資料之風險,並提出風險管控之措施。 提供組織個人資料保護政策之實施與實踐證據。 定期檢視審核,分析現況並矯正改善。 識別並規劃利害關係人之需求與利益。 二、 資料保護長 制定並審查個人資料管理計劃。 根據組織職能,視需求與流程,執行個人資料保護與風險評鑑,並解決相關業務風險。 制定培訓計劃,舉辦個人資料保護政策與流程之教育訓練。 確保組織內部個人資料保護之意識。 根據業務營運與個資法遵要求之落差評估,並建立合規性流程。 透過客戶對隱私與個人資料保護之要求,做為日後促進資料創新之實施。 三、 區域資料保護長 監督資料傳輸活動,並提供個人資料保護法之領導指南。 建立區域創新之資料保護策略。 減少區域內之個資事故。 於資料創新之運用提供戰略性,為組織創造業務價值。 評估新興趨勢與科技,如隱私增強技術、雲端運算、區塊鏈、網絡安全之風險與可行性。 針對上述工作職能與職責,結合所需之專業能力,包括個人資料管理、風險評鑑管理、個資事故緊急應變、利害關係人管理、個人資料稽核認證、個人資料治理、個人資料保護之倫理、資料共享與創新思維,規劃基礎個人資料保護相關課程與進階資料創新課程,使其個人資料保護制度更專業具有規模。目前我國對於資料保護專員並無相關立法規範,若未來修法新加坡個人資料保護委員會之做法亦值參酌。
日本文部科學省發布2021年科學技術與創新白皮書,著眼於韌性社會願景與疫後對策的具體措施日本文部科學省於2021年6月8日公布「2021年科學技術與創新白皮書」(令和3年版科学技術・イノベーション白書),為文部省就政府所訂立之科技政策藍圖,所發布的年度報告書。本年度白皮書循往例,區分為第一部分與第二部分。第一部分著重同年3月發布之第6期科學技術與創新基本計畫(第6期科学技術・イノベーション基本計画)框架下,為達成Society 5.0之願景政府所規劃的一系列政策;第二部分則回顧去(2020)年,政府針對科技與創新創造所採取的各項對策。 本白皮書就韌性社會所需科研項目、強化研究能量的激勵措施等層面,提出以下具體方向: (1)推動社會數位化與零碳排放(脱炭素化) 為強化網路虛擬空間與現實社會間的資源共享與互動發展,虛擬空間之基礎技術方面,持續研發超級電腦、AI與量子電腦,利用所累積的資料運用於深度分析與模擬,並實現超高速計算與量子通訊。虛擬空間與現實社會結合之應用型技術研發方面,包含能輔助身體運作的外部機械、透過自駕車系統銜接高齡化社會交通需求、以及遠端遙控之機器人技術應用於高風險作業環境。推動零碳排放、強化防災能量等面向,則藉由綠色成長戰略、綠色創新基金等政策,發展核融合、次世代蓄電池、精準預測氣候變遷之系統等新興技術;運用AI模擬等強化地震與天災的預報精準度,提升社會應對大規模自然災害的韌性。 (2)「知識」的整合創造與利用,以用於解決各類社會議題 考量社會議題的解決,不僅在於前瞻性自然科學技術的研發,尚需同步理解人類社會的多樣性。同時,人文社會科學近年來,亦多有採用自然科學的研究方法。因之,白皮書主張兩方的跨域知識結合,應用上強調須以人為本來解決各類社會議題。 (3)強化基礎研究能量 應著手改善出於個人經濟因素,放棄申請博士後課程的現況,創造年輕研究者敢於投入自身有興趣且具挑戰性研究課題之環境。基此,白皮書提出設置10兆日圓規模的大學基金,提升約15,000名博士後課程學生的待遇,並推動「創造發展性研究支援事業」(創発的研究支援事業)措施,穩定提供10年期間的研究資金。 (4)COVID-19疫情對策 持續投入研發治療方法(如檢驗抗病毒藥物Favipiravir用於治療COVID-19的效果與安全性)、疫苗與相關醫療器材,並推動以遠距方式進行研究活動,導入機器人技術等來發展自動化實驗、於虛擬空間內進行實驗等;另一方面,有效的防疫對策(如避免人潮密集、密切接觸、密閉空間的「三密」),根基於COVID-19的最新科研成果,因此需讓科學性、客觀性資訊透過適切的管道(如日本科學未來館網站),以淺顯易懂的形式向大眾宣達。
美國「刑事鑑識演算法草案」美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。