德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正

  德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。

  德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點:

  首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。

  其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。

  第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。

  最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。

  可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=7688&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
日本新型態旅宿模式下誕生的民泊新法

  隨著以網路平台經營仲介事業的Airbnb服務開始流行,鎖定國外觀光客的個人住宅和投資型不動產出租產生一種新型態的商機,加上近年旅日遊客增加及2020東京奧運即將來臨,日本政府預期將會有短暫性遊客人數激增。為解決訪日旅客居住設施問題以及特定期間過後旅館閒置造成之資源浪費或倒產問題,日本將在明年(2018)六月施行住宅宿泊事業法(民泊新法)採取鬆綁民宿短期經營之法規限制。該法變革重點包含: 行政程序:原先依據旅館業法採取許可制,民泊新法施行後為申報制。 營業日數:層級化區分旅館與民泊限制年營業180日。 宿泊日數:解除住宿日限制(例如大阪民泊條例須三天兩夜以上)。 建物用途:原本必須為許可旅館,施行後住宅、公寓及招待所皆可。 營業地區:限制在住居專用地營業。   本法施行後將可明顯區分旅館業與民泊業強化管理,並且呼應日本政府的經濟振興計畫,帶動兼業、副業及提供自營作業者從事經濟活動的管道。另外,因新法施行後合法民泊增加產生的新型態商機成為吸引大型平台或企業投入政府經濟再興計畫之誘因,進而提供協助個人民泊經營者申報、環境改善、及代理管理等業務,有利於政府推動相關社會安全網建置。

歐盟執委會提出《用電資料相互操作性要求及程序實施規則草案》促進電力服務相互操作性

  歐盟執委會(European Commission)於2022年7月29日提出《近用電錶及用電資料之相互操作性要求及非歧視性與透明性程序實施規則草案》(Commission Implementing Regulation (EU) on interoperability requirements and non-discriminatory and transparent procedures for access to metering and consumption data),於2022年9月5日草案第二階段之公眾意見徵集結束。本草案以進一步落實《內部電力市場指令》(Directive (EU) 2019/944)中賦予用戶近用有關用電及包括行政手續費用、使用輸配電過路費等資料,促進智慧電錶系統(smart metering system)於資料模型階段及應用層面之相互操作性(interoperability),提高市場參與者資料近用與交換之標準,以及未來創新能源服務標準等目標。 為落實上述指令之要求,本草案旨在規定系統相互操作性以及資料近用的非歧視性與透明性要求,其重點如下: (1)本草案適用對象為經認證之歷史計量及用電資料、未經認證的近即時計量(non-validated near-real time metering)、用電資料形式的計量以及用電資料。 (2)確保供應商於用戶同意下能夠以透明且連續性的方式近用用戶資料(包括判讀及使用)。用戶亦得近用其於智慧電錶系統的資料。 (3)根據會員國的實踐,定義歐盟層級在商業模式層面、功能層面及資訊層面等一般性規則與程序規定的「參考模型」(reference model)。參考模型為特定服務及程序所需的基本工作程序,包括: A. 由各種角色、職責及其相互作用組成的「角色模型」,包括計量資料管理員(metered data administrator)、計量站管理員(metering point administrator)、資料近用提供者及權限管理員的角色和職責; B. 由資訊對象、屬性以及該對象間關係組成的「資訊模型」; C. 詳細說明程序步驟的「程序模型」。 (4)為有效確保資料近用程序的透明度,有必要收集會員國提供的國家實踐報告,並報告至歐盟層級,同時協助會員國報告其國家實踐。 (5)適用本草案之個人資料需遵守《歐盟一般資料保護規則》(GDPR);由於智慧電錶符合終端設備的要求,也適用《電子通訊個人資料處理暨隱私權保護指令》(Directive 2002/58/EC)。

美國加密法案隨潮流再起

  緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。   加密法案的主要內容係以兩方面進行加密應用之保護, 各州州政府不得授權或要求產品或服務的製造商、開發商、銷售商或供應商,(A)設計或更改產品或服務中的安全功能,以供其進行監視或允許其進行實體搜索;(B)使其有能力解密或便於理解加密應用後的內容。 各州州政府不得禁止加密或類似安全功能的產品或服務,進行製造、銷售或租賃、提供銷售或租賃, 或向公眾提供覆蓋的產品或服務。此外,法案亦針對相關服務或產品的定義作了明確的說明。   本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP