於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。
中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。
為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。
本文為「經濟部產業技術司科技專案成果」
歐盟法院(Court of Justice of the European Union, CJEU)於2023年12月14日對Gemeinde Ummendorf(C‑456/22)案作出判決。歐盟法院試圖釐清《歐盟一般個人資料保護規則》(General Data Protection Regulation, GDPR)第82條的民事求償規範中,資料主體受到非財產上的損害要到何種程度才可獲得賠償。 本案源自於兩位自然人原告與德國的烏門多夫市政府(Municipality of Ummendorf)之間的紛爭。2020年,烏門多夫市政府未經兩位原告同意情況下,在網路上公布市議會議程與行政法院判決,這些資訊內容均多次提及兩位原告的姓名與地址。兩位原告認為市政府故意違反GDPR,因此依據GDPR第82條請求市政府賠償,並進一步主張該條意義下的非財產損害,不需要任何損害賠償門檻。然而,市政府則持相反意見。 長久以來,德國法院傾向認為,GDPR的非財產上損害需要超過某個「最低損害門檻」才可獲得賠償。然而,承審法院決定暫停訴訟程序,並將是否應有「最低損害門檻」以及其基準為何的問題,提交給歐盟法院進行先訴裁定。 歐盟法院考慮到,GDPR的宗旨在於確保在歐盟境內處理個人資料時對自然人提供一致和高水準的保護,如要求損害必須達到一定的嚴重性閾值或門檻才可賠償,恐因為成員國法院認定的基準不同,進而破壞各國實踐GDPR 的一致性。因此,歐盟法院最後澄清,GDPR的民事賠償不需要「最低損害門檻」,只要資料主體能證明受有損害,不論這個損害有多輕微,都應獲得賠償。
音樂串流服務網站鼻祖Grooveshark正式關閉美國音樂串流服務網站Grooveshark於2015年4月30日在紐約聯邦法院與三家唱片公司(Warner Music Group, Universal Music Group, Sony Music Entertainment)達成和解協議,以避免由陪審團判決(jury verdict)所帶來高達7億3千6佰萬美金的侵權賠償金。Escape Media Group以5千萬美金、公開道歉及關閉經營將近10年的Grooveshark網站為代價結束了這起爭訟多年的著作權訴訟案。 Grooveshark網站的成立理念爲提供使用者上傳音樂的平臺,樂迷可透過平臺互相分享與檢索音樂,因此網站原本適用於數位千禧年著作權法(Digital Millennium Copyright Act)中的避風港原則。惟Grooveshark網站實質上透過員工上傳盜版音樂,此一做法已明顯超出避風港原則的保護範圍。紐約聯邦法院法官於去年秋季的裁定中指出,Escape Media Group透過員工上傳盜版音樂獲取利益為無可爭辯的證據,因此認爲該公司應對著作侵權負責。 紐約聯邦法院法官於審前會議中指出一旦Escape Media Group的故意侵權罪成立,每首歌曲應賠償15萬美金的侵權賠償金,而網站目前擁有近5千首歌曲,因此侵權賠償金額將高達7億3千6佰萬美金。此裁定成爲了此案達成和解協議的催化劑。對於此次的訴訟結果,美國唱片業協會(The Recording Industry Association of America,)代表三家唱片公司表示此次的和解成功杜絕了侵權音樂的主要來源,對於藝術工作者而言十分可貴。
美國聯邦通訊委員會發布公告重申自動簡訊發送適用電話消費者保護法聯邦通訊委員會(Federal Communication Commission, FCC)於2016年11月18日發布一項標題為Robotext Consumer Protection的執法諮詢文件。該文件就自動發送簡訊(Autodialed text messages,又稱robotexts)於電話消費者保護法(Telephone Consumer Protection Act of 1991, TCPA )內的適用予以釐清。 在該執法諮詢文件內,解釋TCPA法條中對於自動撥號系統定義為任何可以儲存或是產出號碼並自動撥打的設備。該法對於自動撥號系統之限制,包含通話(call)、預錄語音(prerecorded calls)及簡訊(texts),除非已取得接收方的明示同意(prior express consent),或符合下列狀況之一,方得以自動撥號系統為之: (1) 基於緊急狀況, (2) 在依循消費者隱私保護的情況下,對終端使用者為免費且獲得FCC的豁免, (3) 單純為回收對聯邦所負擔的債務、或其所保證的債務。 值得注意的是,聯邦通訊委員會針對當下網路科技發展出的訊息傳送模式做出解釋,簡訊apps、以及任何符合TCPA自動撥號定義的「網路至電話之簡訊傳送」(Internet-to-phone text messaging)等兩種情況亦納入TCPA的適用。因此,發送方主張對方已為事前同意者,應負擔舉證責任,並使消費者透過合理方式隨時取消其同意;於其主張不想再收到任何自動發送簡訊後,該發送方應立即發送一封簡訊以確認接收者的「選擇退出」要求(opt-out request)。 再者,對於已移轉的門號進行自動簡訊之發送,不論發送方是否有認知該門號換人持有,在未經該門號持有人同意的情況下,發送方至多只能對該號碼自動發送一封簡訊;如之後再度自動發送簡訊,即判定違反TCPA規範。 FCC此份文件雖從保護消費者的立場出發,但所設條件明顯苛刻,因此引發諸多爭議。此外引人注意的是,此文件發布前的一個月,ACA International v. FCC一案才於10月19日結束言詞答辯,該案爭點主要為FCC是否不當擴張適用TCPA,此案後續可用以追蹤該案聯邦法院是否肯認FCC對於TCPA的適用觀點。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。