有別於金融科技(Fintech)著重於運用科技手段使金融服務變得更有效率,因而形成促進金融產業發展的一種經濟產業。在美國源於對2008年金融風暴的恐懼,更傾向在金融科技提升金融服務便利與效率的同時,倡議如何使行政機關在監理過程中更能夠兼顧公平、安全及消費者保護。消費者保障與洗錢防制是行政機關進行金融監理的兩大核心目標,而金融科技服務下的客戶身分核實、信用紀錄與償債能力查核等風險控管措施,在全球發展金融科技方興未艾之際,美國則積極發展監理科技「Regtech」。意指行政機關嘗試透過科技手段有效監理業者的營運動態,如區塊鏈技術(Block-Chain)改變銀行現行運作模式,不僅降低業者營運成本外,更透過科技監理的方式協助業者即時達成法令遵循的目標,縮短法令遵循改善的過渡期間,減輕風險產生的可能。同時,也讓行政機關得以即時預防,並因應任何類似2008年金融風暴之情事的發生。
本文為「經濟部產業技術司科技專案成果」
在數位時代,兒童及青少年長時間使用網際網路已成為生活常態,然而,兒少在高度使用社群媒體的同時,也透過演算法大量獲取諸如飲食失調、自殘等「有毒內容」(toxic content)。在享受網路便利性的同時,兒少也面臨遭受騷擾、霸凌,被迫轉學甚至輕生等困境,心理健康面臨危機。為解決前揭問題,美國參議院於2024年7月30日通過《兒童網路隱私保護法》(Children’s Online Privacy Protection Act, COPPA)修正法案及《兒童網路安全法》(Kids Online Safety Act, KOSA)之立法,加強兒少網路安全之保護。 COPPA早於1998年制定,並於2000年開始施行,該法案對於網路營運商蒐集未滿13歲兒童之個人資料相關隱私政策訂有規範,惟自訂定後迄今約25年,均未因應時代變遷做出調整,終於在本次會期提出修正草案。另KOSA之立法重點,則在於要求網路平台業者對兒童預設提供最高強度隱私設定,並建立控制措施,提供父母保護子女及認知到有害行為的機制,課予網路平台業者預防及減輕兒童陷於特定危險(如接收宣傳有毒內容之廣告)之義務等。此二法案經參議院投票通過後,合併為一案送交眾議院審核,重點說明如下: 1.將網路隱私保護主體擴張至未滿13歲之兒童及未滿17歲之青少年(下稱兒少),禁止網路平台業者在未經兒少使用者同意情況下,蒐集其個人資料。 2.禁止網路平台業者對兒少投放定向廣告(targeted advertising)。 3.為保護「合理可能會使用(reasonably likely to be)」網路平台的兒少,調整法案適用的「實際認知(actual knowledge)」標準,將適用範圍擴及至「合理可能被兒少使用(reasonably likely to be used)」的網路平台。 4.建立「清除鈕(eraser button)」機制,使兒少及其父母得以要求網路平台業者在技術可行情況下,刪除自兒少所蒐集之個人資料。 5.要求商務部(the Secretary of Commerce)於新法頒布後180日內,應成立並召集兒童網路安全會議(Kids Online Safety Council),進行包含識別網路平台對兒少造成危害之風險,提出相關評估、預防及減輕危害之建議措施及方法、進行與網路對兒少造成危害相關主題之研究等業務。 觀本次可謂美國對於兒少網路保護之重大進展,惟此法案後續是否能順利提請總統簽署成法,正式具約束效力,仍須持續關注眾議院未來動向。
日本修正放送法,跨出水平立法第一步2010年11月26日,日本組成臨時國會,在眾議院不到3小時、參議院不到1小時的審查速度,完成「放送法」修正案(連帶小修「電波法」與「電信業法」(電気通信事業法))。新法於同年12月3日公佈,並於2011年6月30日施行。 日本此次修法,在概念上並未法規匯流,而係將「有線電視放送法」、「電信役務利用放送法」與「有線廣播放送法」整併進「放送法」;概念類似我國主管機關為新聞局時代的「廣電三法整併草案」。細部修正重點如下: 1、「放送」定義由「以供公眾直接收訊為目的之無線傳訊」,修正為「以供公眾直接收訊為目的之電子傳訊」。將網際網路傳輸之方式納入定義中。 2、將「有線電視放送」等舊有定義廢除,新區分「基幹放送」與「一般放送」兩種類。所謂基幹放送,係指依電波法之規定放送之無線電台,使用被指配之專用頻段、或優先使用頻段而為之放送;所謂一般放送,則係指基幹放送以外之放送。 3、廢除舊法中的「委託、受託放送制度」,導入「軟體硬體分離」之概念。 4、總體而言,新法明顯強化了內容管制。除了上述總務大臣之權限外,新法中亦新增電視事業之節目種類公表義務、並強化了放送事故等技術問題的對應規範。
歐盟提出通用型人工智慧模型的著作權管理合規措施建議歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國食品藥物管理局公布三項食品安全查檢與風險管理相關規定為落實美國食品安全現代化法有關食品追溯與風險控管安全認證規定,美國食品藥物管理局(U.S. Food and Drug Administration, FDA)於2015年11月13日公布「農產品安全規則」(The Produce Safety rule)、「第三方審核機構進行食品安全認證規則」(The Accredited Third-Party Certification rule)與「外國供應商審核規則」(The Foreign Supplier Verification Programs, FSVP)等三項實行細則。其中,「農產品安全規則」首次針對美國境內生產農場建立強制性安全標準,為種植、收獲、包裝和保存農產品建立基於科學的標準(包括水質、員工健康和衛生、野生和家養動物、動物源生物土壤改良劑以及設備、工具和建築物等各種要求)。 而在「第三方審核機構進行食品安全認證規則」與「外國供應商審核規則」主要係確保進口食品符合美國境內生產食品相同之安全認證標準,確保與美國食品追溯制度構聯。食品藥品管理局採用多管齊下的策略,包括與外地監管機關建立夥伴合作關係、檢查出口國的設施、要求進口商就進口食品安全負責,以及對進口食品進行針對性的檢測。