何謂「阿西洛馬人工智慧原則」?

  所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。

  該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。

  其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「阿西洛馬人工智慧原則」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7716&no=57&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
韓國2013年智財施行計畫檢討評估作法介紹

韓國2013年智財施行計畫檢討評估作法介紹 科技法律研究所 法律研究員 陳聖薇 2014年12月23日 壹、事件摘要   依據韓國智慧財產基本法第10條,韓國針對國家智慧財產施行計畫之執行成果,應定期進行整體檢討評估,以作為往後計畫之參考指標。為此,韓國於2014年8月11日公布「2013年度國家智財施行計畫之檢討評估結果」[1](以下簡稱2013檢討評估結果)。本文以下將簡要說明之。   如同「2012年度國家智財施行計畫之檢討評估結果」(以下簡稱:2012檢討評估結果),2013檢討評估結果針對2013年度國家智財施行計畫(以下簡稱2013年施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,以及地方自治團體等六個面向挑選出重點推動之35課題,由民間專家組成「政策評估團」,以確保評估之專業性及客觀性。而具體評估方式與指標以下分別說明之。 貳、評估方式與指標 一、評估方式   韓國考量到智財施行計畫之特殊性,再者,評估國家層級智財政策之成效,不僅需要評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,以作為下一年度計畫政策之參考。   為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。最後,本智財施行計畫之最終評估結果會告知相關機關,供其制定、執行政策之參考,並且運用於智慧財產財政分配方向及下年度施行計畫之制定上。 二、評估指標   在評估指標設計上,韓國一大特色在於其不以行政機關別為政策評估,而是以創造、保護、運用、基礎環境、新智慧財產等五大政策領域以及加上地方自治團體面向作為評估框架[2]。進一步之細部評估指標則運用國務總理室之政府業務評估(特定評估[3])基本架構,針對「政策形成–執行–成果」整個過程,分階段進行評估。此外,2013檢討評估結果是以2012檢討評估結果為基礎,將既有之指標統合、刪減後,再依據地方政策特殊性,增加地方自治團體之評估指標。指標變更事項有:依據各地方特殊性需要有針對地方量身訂作之「地方自治團體政策差別性」指標;針對識別性較弱之「推動日程之適當性」與「監督與情況變化之對應性」之指標整合。配分變更事項有:因應政策是否實際有感於民的比重日亦加重,「政策效果」之指標也加重配分;就新的指標針對中央與地方分別進行評估。詳細指標內容如下表所示 : 表1:2013年智財施行計畫之中央(地方)機關政策評估指標 區分 評估項目 評估基準 政策形成(30%/35%) 1.計畫確立之適切性(15%) 1-1.事前分析、意見蒐集之充實性(5%) 1-2.成果指標及目標值之適當性(10%) 2.政策基礎環境之確保水準(15%/20%) 2-1.推動體系之充實性(5%/10%) 2-2.資源分配之適當性(10%) 政策執行(30%) 3.推動過程之效率性(20%) 3-1. 與有關機關、政策之連結性(10%) 3-2.監督與情況變化之對應性(10%) 4.政策擴散之努力水準(10%) 4-1.政策溝通、宣傳、教育之充實性(10%) 政策成果(40%/35%) 5.政策成果及效果(40%/35%) 5-1.成果目標達成度(20%/15%) 5-2.政策效果(20%) 資料來源:韓國國家智財委員會,http://www.ipkorea.go.kr/index.do。 參、代結論   在前述評估機制運作下,2013檢討評估結果共列出8個優秀課題與4個待改善之課題。後續針對待改進課題,該主管機關在接受評估委員之改善意見後,會提出補充之改善計畫,表示其要如何解決政策推動之障礙因素,而國家智財委員會則會隨時檢視其執行狀況,並且適時給予政策支援。至於優秀課題部分,韓國將會提供細節資訊與相關機關共享,讓機關之間互相學習,樹立一個學習標準(benchmarking)。   從施行計畫、檢討評估到提供量身訂做之改善建議,顯示韓國對於建構智慧財產強國的企圖。而2012、2013檢討評估結果之經驗,也將持續提供為2014年檢討評估之參考,使智慧財產施行計畫之檢討評估能更具效率。 [1]韓國國家智慧財產委員會,2014年8月11日公布之第11回國家智財委員會決議〈13년 시행계획 점검평가결과〉。 [2]依據政策領域評估的課題計有 :創造(2)、保護(4)、活用(5)、基礎(3)、新智慧財產(4)以及地方自治課題(17)。 [3]韓國政府業務評估基本法第2條第4款,所謂特定評估,指國務總理以中央行政機關為對象,為統合管理國政,對必要之政策進行評估。

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年10月8日 壹、前言   我國近年積極發展智慧農業,一般農企業或農民發展智慧化過程中,面臨高額的設備建置、維護成本使其卻步,因此創設新的農業數據流通運用商業模式將能降低智慧化門檻,成為智慧農業普及落地之關鍵。本文將研析與我國農情相近之日本推動智慧農業數據流通運用之策略,作為我國智慧農業發展之借鏡。   日本與我國同樣面臨從事農業者高齡少子化以致後繼無人,日本政府於2016年提出Society 5.0概念,期待以資通訊(Information and Communication Technology,ICT)技術帶動發展社會各個領域[1],於農業領域利用農業ICT可使資深農民內隱知識成為外顯化數據而利於經驗傳承。   日本當時民間企業已有開發眾多ICT系統服務技術,不同業者因未進行合作,其提供的系統服務互不相容,ICT系統服務產出之數據格式、標準不一;另一方面,公部門(研究、行政機關)內的資料亦各自分散管理。為促進農業數據整合管理、流通運用,日本農業數據協作平台(WAGRI[2])因而催生。 貳、日本農業數據協作平台WAGRI發展歷程 一、日本首相指示建構數據平台   日本政府於2017年3月24日召開第6回「未來投資會議[3]」,作為主席之首相安倍晉三提到:為了能栽培出安心可口的作物,官方、民間應互相拿出作物生長狀況、氣候、地圖等更新資料,並且於2017年年中建構無論任何人均可簡易利用的資訊協作平台,必要數據須完全公開,交由IT綜合戰略本部[4]將前述平台規劃具體化。   於2017年6月9日召開的第10次未來投資會議中,公布「未來投資戰略2017[5]」,以實現「Society 5.0」為目標,其中提到於農、林、水產業領域,奠基於公部門保有之農業、地圖、氣象等公開化資訊,能夠共有活用各種數據的「日本農業數據協作平台(下稱WAGRI)」將於2017年開始建構。 二、WAGRI試營運   WAGRI由內閣府「策略性創新創造計畫(Strategic Innovation Promotion Program,SIP)」第1期計畫11個課題之一「次世代農林水產業創造技術」[6]支持(管理法人為農研機構[NARO][7]),由慶應義塾大學SFC研究所[8]建置,與參與SIP研究計畫聯盟,包括農業生產法人、農機製造商、ICT供應商、大學與研究機關等(例如日本IT企業NTT [Nippon Telegraph and Telephone Corporation]、富士通[Fujitsu Limited];農機大廠久保田[Kubota Corporation]、洋馬[Yanmar Holdings Co., Ltd.][9])共23個組織一同建置,具備「合作」(打破不同系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式得以促成數據交換利用商業模式建立)、「提供」(由公私部門提供土壤、氣象等數據得以促成數據取得和後續流通)三大功能之WAGRI,試營使用時已有實作案例指出,活用WAGRI後在數據蒐集與利用上的勞力與時間成本明顯縮減[10]。 三、WAGRI自主營運   2019年4月以農研機構(NARO)為營運主體,正式營運開始原本由SIP計畫支援,轉由農研機構(NARO)正式營運。   今(2020)年4月更新WAGRI平台利用資訊自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用[11]: 1. 數據利用者(利用WAGRI數據者)、數據利用暨提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 2. 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 但書:若僅提供之數據屬於無償者,原則上不需要繳納平台利用費 參、因應疫情WAGRI擴散之應用   日本SIP第2期計畫12個課題之一「智慧生物產業與農業基礎技術[12]」所支持的「智慧食物鏈聯盟[13]」,將擴張SIP第1期計畫所建置之WAGRI,建構智慧食物鏈平台(簡稱WAGRI-dev),智慧食物鏈聯盟主要任務為建構智慧食物鏈(預計於2025年開始商業化服務),促使食物的加工、流通、銷售、出口相關數據可相互運用,以作為日本生鮮物流之基礎,將架構於WAGRI之基礎擴建為WAGRI-dev。   為因應疫情,今(2020)年4月7日聯合國糧農組織(Food and Agriculture Organization of the United Nations,FAO)和世界衛生組織(World Health Organization,WHO)聯合發佈「針對食品安全監管部門防控新型冠狀病毒肺炎(COVID-19)與食品安全的臨時指南[14]」,由日本SIP計畫課題「智慧生物產業與農業基礎技術」之智慧食物鏈聯盟,基於前述指南制定「新冠肺炎(COVID-19)對應指針」;同樣作為前述課題一環的「日本食品指針協作系統(簡稱WAGRI.info)」[15]為因應疫情而產出相對應的應用。   WAGRI.info,於7月13日開放網站受理食品、農產品相關業者進行食安登錄,不限於符合新冠肺炎對應指針,符合既有之品質・安全管理指針(例如:危害分析重要管制點[Hazard Analysis and Critical Control Points,HACCP])等即可申請登錄,並具備企業檢索功能供一般大眾使用。   WAGRI.info為WAGRI-dev之一環,未來將陸續添加多樣數據協作機能、防止數據竄改與不法入侵等措施。日本政府從原本期待藉由擴張WAGRI打造出從生產,以至加工、流通、銷售、出口等,建構一世界首度智慧食物鏈之外,因應疫情增加相關機能以建構食安資訊網。   我國亦有智慧農業數據相關平台提供OPEN DATA介接功能[16]、開發食安溯源整合應用系統,提供校園午餐食材流向資料,日本WAGRI整合與共享數據的模式可作為我國發展智慧農業活用數據之借鏡外,WAGRI.info之作法亦可供國內因應疫情之食安政策參考。 [1]〈科学技術基本計画〉,內閣府網站,https://www8.cao.go.jp/cstp/kihonkeikaku/index5.html(最後瀏覽日:2020/10/08)。 [2]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/10/08)。 [3]作為日本政府實施經濟政策與實現成長戰略之指揮總部所設置的日本經濟再生本部,從2016年起約每月召開「未來投資會議」,討論成長戰略與加速社會結構改革以擴大對未來之投資。〈日本経済再生本部〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/keizaisaisei/(最後瀏覽日:2020/10/08)。 [4]日本政府積極展開推動活用IT科技做為解決各領域社會議題之手段,從2000年日本施行IT基本法(高度情報通信ネットワーク社会形成基本法),於隔年依法設立IT戰略本部(高度情報通信網路社会推進戦略本部),2013年依據政府CIO(Government Chief Information Officer)法於内閣官房設立「內閣資訊技術政策局局長(内閣情報通信政策監,簡稱政府CIO)」,IT戰略本部與政府CIO統整為IT綜合戰略本部(高度情報通信ネットワーク社会推進戦略本部,IT総合戦略本部),以迅速推動促成高度資通網路社會的重點政策,打破省廳的縱向斷層,整個政府橫向串聯。〈高度情報通信ネットワーク社会推進戦略本部(IT総合戦略本部)〉,首相官邸網站,https://www.kantei.go.jp/jp/singi/it2/,(最後瀏覽日:2020/10/08)。 [5]許祐寧,〈日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標〉,資策會科法所網站,2017/08,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=7844(最後瀏覽日:2020/10/08)。 [6]內閣府聚焦「Society 5.0」重要課題,結合未來投資會議施政重點領域,編列年度科技預算,創設並推動「策略性創新創造計畫(戦略的イノベーション創造プログラム,Strategic Innovation Promotion Program,SIP),SIP第1期計畫為2014年度到2018年度共5年期的計畫。〈戦略的イノベーション創造プログラム(SIP:エスアイピー)〉,內閣府網站,https://www8.cao.go.jp/cstp/gaiyo/sip/index.html(最後瀏覽日:2020/10/08);邱錦田(2017),<日本實現超智慧社會(社會5.0)之科技創新策略>,國家實驗研究院網站,https://portal.stpi.narl.org.tw/index/article/10358(最後瀏覽日:2020/10/08)。 [7]農研機構,日本國立研究開發法人農業・食品產業技術綜合研究機構The National Agriculture and Food Research Organization,簡稱NARO。 [8]位於慶應義塾大學湘南藤澤校區的政策・媒體研究科、綜合政策學系、環境情報學系的附屬研究所,簡稱SFC研究所,為推動日本智農發展之重要學研單位,任職於該所教授神成淳司為WAGRI研究負責人,同時身為內閣官房副政府CIO、IT綜合戰略室長代理,促成「農業情報創成·流通促進戰略」產出,亦身兼WAGRI協議會會長、NARO 農業共通資訊總監之角色,促成WAGRI與日本智慧農業實證計畫串接,其為日本政府推動農業數據流通之重要角色,促進日本智農發展不餘餘力。SFC研究所網站,https://www.kri.sfc.keio.ac.jp/(最後瀏覽日:2020/10/08)。 [9]IoTNEWS,〈マイクロソフト、産官学連携で構築する「農業データ連携基盤」でMicrosoft Azureを活用したデジタル農業を実現〉,2017/05/15,https://iotnews.jp/archives/56366(最後瀏覽日:2020/10/08)。 [10]神成淳司,〈ICTが社会を変える : 農業データ連携基盤の展開と未来図〉,《技術と普及 : 全国農業改良普及職員協議会機関誌》, 12月號,頁24-26(2017);農林水産省技術政策室,〈農業データ連携基盤の構築について〉,2018/09,http://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-15.pdf (最後瀏覽日:2020/10/08)。 [11]〈農業データ連携基盤(WAGRI)の2019年度以降の利用について〉,2019/4/2,農研機構網站,https://www.naro.affrc.go.jp/project/research_activities/laboratory/rcait/130311.html(最後瀏覽日:2020/10/08);〈農業データ連携基盤(WAGRI)利用申請〉,農研機構網站https://www.naro.affrc.go.jp/laboratory/rcait/wagri(最後瀏覽日:2020/10/08)。 [12]同註6,SIP第2期計畫為2017年度末到2022年度共約5年期的計畫。 [13]智慧食物鏈之建構為該課題的主要研究之一,智慧食物鏈聯盟成員包括:由内閣官房、内閣府、農林水產省等政府組織作為觀察員,由地方自治體、學術研究機關、農業生產法人、批發市場、中盤商、物流業、零售業、製造商、ICT供應商等超過70個組織參與(聯盟代表為慶應義塾大學SFC研究所),參註13;〈「SIP第2期 「スマートバイオ産業・農業基盤技術」シンポジウム2020 -新たなスマートフードチェーンの構築をめざして-」〉,2020/03/10,WAGRI網站,https://wagri.net/ja-jp/News/generalnews/2020/20200310(最後瀏覽日:2020/10/08)。 [14]See FOOD AND AGRICULTURE ORGANIZASTION OF THE UNITED NATIONS [FAO], COVID-19 and Food Safety: Guidance for Food Businesses: Interim guidance (Apr. 7, 2020), http://www.fao.org/family-farming/detail/en/c/1275311/(last visited Oct. 8, 2020).〈聯合國糧農組織和世界衛生組織聯合發佈針對食品安全監管部門防控新冠肺炎(COVID-19)與食品安全臨時指南〉,中國大陸檢驗檢疫科學研究院網站,http://www.caiq.org.cn/kydt/902625.shtml(最後瀏覽日:2020/10/08)。 [15]WAGRI.info 事務局,〈「WAGRI.info(食品ガイドライン連携システム)」のWEBサイト開設、事業者登録受け付け開始〉,2020/07/13,https://kyodonewsprwire.jp/release/202007131927(最後瀏覽日:2020/10/08);日本食品指針協作系統WAGRI.info網站,https://www.wagri.info/(最後瀏覽日:2020/10/08)。 [16]智慧農業共通資訊平台網站,https://agriinfo.tari.gov.tw/(最後瀏覽日:2020/10/08);〈智慧農業4.0共通資訊平台建置(第二期)成果發表會〉,2019/12/12,智慧農業網站,https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J141518566276623429&sid=0J338358950611186512(最後瀏覽日:2020/10/08)。

美眾議院擬立法要求ISP業者留存用戶資訊

  八位美國眾議員於2007年2月6日連署提出新法案,擬賦予司法部門首長更大的權限要求網路服務提供者(ISP)記錄用戶的網路活動並留存特定的用戶資訊。草案提交眾議院審議後,隱私保護機構紛紛表達反對立場。   此次由德州眾議員Lamar Smith主導的新法案「the Internet Stopping Adults Facilitating the Exploitation of Today's Youth Act of 2007(簡稱SAFETY Act)」中,ISP業者必須保留的用戶資料,最低限度需包括用戶姓名、地址、電話及IP位址;至於用戶資料的留存期間,則將交由美國司法部決定。以現況而言,多數ISP業者所保存的用戶資訊均在半年以下;然而美國司法部部長Alberto Gonzales曾於2006年9月公開倡議ISP業者資料留存期間,應以兩年為宜。   此外,草案亦要求ISP業者發現其所提供的服務存在兒童色情情事時,應主動通報主管機關,否將面臨15至30萬美元的罰金;若其有意地助長兒童色情的流傳,更可能面臨最高10年的徒刑。   批評者如「民主及科技中心」(Center for Democracy and Technology;CDT)表示,此法案不啻為對憲法修正條文第一條的威脅,毫無限制的授權更可能肇致用戶資料的留存期間成為司法首長個人得以專擅決策之事項。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP