英國航空公司(British Airways)近來對數位藥丸申請了專利,並且調查乘客是否願意吞食數位藥丸,使空服員得對其提供更好的服務。
該數位藥丸以主要是一個可食用的偵測系統,藉此航空公司得以知悉乘客的身理狀況,包含偵測乘客的心跳、體溫、或是否處於睡眠等生理反應,航空公司便可據此調整基上的的燈光、用餐時間以及機上娛樂設施等等。這一整套「為了提升乘客旅遊品質」的系統現在被寫成專利申請書,並於2016年提出英國航空公司表示利用不同的資料可以幫助機員了解乘客是醒或睡、是否緊張、冷熱或感到不舒適,並通知機員。依據其專利申請書,英國航空希望創造一個App,協助乘客改善整體旅遊品質,不僅是在機上,而是乘客從踏出家門開始到旅程結束,均能享受此科技之便利。
本文為「經濟部產業技術司科技專案成果」
經過深入的調查後,歐盟執委會以違反歐洲聯盟運作條例(TFEU)第102條之禁止濫用獨占地位課處斯洛伐克電信(Slovak Telekom a.s.)及其母公司德意志電信(Deutsche Telekom AG)總計38,838,000歐元之罰金。 斯洛伐克電信以超過五年之濫用獨占地位之策略,阻擋其他來自斯洛伐克市場之競爭者提供寬頻服務,因而違反歐盟反托拉斯法。尤其,執委會認為其拒絕提供開放之用戶迴路(unbundled access to its local loops)予其競爭者,因而導致其他經營者之利潤擠壓。其母公司德意志電信對於其子公司之行為有責;因此,應連帶負擔斯洛伐克電信之罰款。此外,德意志電信於2003年已經因為在德國寬頻市場的利潤擠壓而被罰款,該公司亦被課處額外之罰款共31,070,000歐元,以確保嚇阻及制裁其反覆的濫用行為。 2005年8月,斯洛伐克電信公布在某些條件下,允許其他經營者使用其開放用戶迴路(ULL)。此外,斯洛伐克電信亦不正當地阻擋用戶迴路開放的必要網路資訊;單方面地減少規範中所要求其開放迴路之義務的範圍,以及,在每一個取得開放用戶迴路所需之步驟上,設定不公平的條款和條件(例如搭配、資格、和銀行擔保)。因而延後或阻止其他經營者進入斯洛伐克零售寬頻服務市場。 此外,當其他競爭者以斯洛伐克電信訂定之零售價格販賣寬頻服務予零售消費者時,將產生利潤擠壓而導致虧損;在此種情況下,其他經營者將無法進入斯洛伐克市場。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。 報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。 未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。
敏感科技保護「敏感科技」的普遍定義,係指若流出境外,將損害特定國家之安全或其整體經濟競爭優勢,具關鍵性或敏感性的高科技研發成果或資料,在部分法制政策與公眾論述中,亦被稱為關鍵技術或核心科技等。基此,保護敏感科技、避免相關資訊洩漏於國外的制度性目的,在於藉由維持關鍵技術帶來的科技優勢,保護持有該項科技之國家的國家安全與整體經濟競爭力。 各國立法例針對敏感科技建立的技術保護制度框架,多採分散型立法的模式,亦即,保護敏感科技不致外流的管制規範,分別存在於數個不同領域的法律或行政命令當中。這些法令基本上可區分成五個類型,分別為國家機密保護,貨物(技術)之出口管制、外國投資審查機制、政府資助研發成果保護措施、以及營業秘密保護法制,而我國法亦是採取這種立法架構。目前世界主要先進國家當中,有針對敏感科技保護議題設立專法者,則屬韓國的「防止產業技術外流及產業技術保護法」,由產業技術保護委員會作為主管機關,依法指定「國家核心科技」,但為避免管制措施造成自由市場經濟的過度限制,故該法規範指定應在必要的最小限度內為之。