RFID應用發展與相關法制座談會紀實

刊登期別
2004年11月
 

※ RFID應用發展與相關法制座談會紀實, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=777&no=57&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
《加州隱私權法(California Privacy Rights Act, CPRA)》現在備受關注;CCPA修正案

  2020年11月3日,加州於其大選中以公投方式批准通過第24號提案(Proposition 24),該提案頒布《加州隱私權法》(California Privacy Rights Act,以下簡稱CPRA)。CPRA對加州消費者隱私保護法(California Consumer Privacy Act 2018,以下簡稱CCPA)所規定之隱私權進行重要修正,改變了加州的隱私權格局。   CPRA賦予加州消費者新的隱私權利,並對企業施加新的義務,例如消費者將有權限制其敏感性個人資料(例如財務資料、生物特徵資料、健康狀況、精確的地理位置、電子郵件或簡訊內容及種族等)之使用與揭露;消費者有權利要求企業更正不正確的個人資料;CPRA同時修改現有的CCPA的「拒絕販售權」,擴張為「拒絕販售或共享權」,消費者有權拒絕企業針對其於網際網路上之商業活動、應用或服務而獲得的個人資料所進行之特定廣告推播。CPRA亦要求企業對各類別之個人資料,按其蒐集、處理、利用之目的範圍及個人資料揭露目的,設定預期的保留期限標準。   CPRA另創設「加州隱私保護局」(California Privacy Protection Agency)為隱私權執行機構,該機構具有CPRA之調查、執行和法規制定權,改變了CCPA 係由加州檢察長(California Attorney General)負責調查與執行起訴的規定,並規定加州隱私保護局應於2021年7月1日之前成立。    CPRA將在2022年7月1日之前通過最終法規,且自2023年1月1日起生效,並適用於2022年1月1日起所蒐集之消費者資料,隨著CPRA的通過,預期可能促使其他州效仿加州制定更嚴格之隱私法,企業應持續關注有關CPRA之資訊,並迅速評估因應措施。

新加坡將推動國家電子醫療紀錄

  新加坡自今年(2018年)1月5日起推動「醫療服務法案(Healthcare Services Bill)」之制定,該法案預計取代現有「私人醫院和醫療診所法(Private Hospitals and Medical Clinics Act)」。其中「國家電子醫療紀錄(National Electronic Health Record),下稱NEHR」將整合並改善國營醫療機構及非國營醫療機構兩種醫療紀錄無法互通之情形,而行動醫療及遠端醫療亦納入之。   根據目前之諮詢狀況(已於今年2月15日結束),提案單位衛生部(Ministry of Health)表示,由於現代醫療技術已趨近複雜,若能整合各醫療單位之就診紀錄,將可大幅提升醫療效率,特別是在急診的狀況下,整合過的單一病歷將可降低評估所需的時間。   而對於病患之個資方面保護,該部表示,首先,NEHR並不會蒐集全部患者的醫療參數,只有患者之核心醫療參數才會上傳至NEHR之資料庫內,此外亦不提供非醫療目的外之使用(例如就業及保險評估)。而為降低非法使用之機率,非法使用亦將處罰之。   另外為尊重病患個人之資訊自決權,NEHR亦提供了病患選擇退出機制(opt-out)以作為個資保護的最後屏障。然而該退出機制仍不同於一般的退出機制(即退出後不得蒐集、處理及利用),該機制僅禁止各醫療機構讀取該病患之醫療紀錄,但是各該機構依NHER之架構仍應將每次就診紀錄上傳之,此一設計係避免緊急情況下或病患同意讀取電子病歷時,卻無醫療紀錄可供查詢之窘境。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

Google新搜尋服務引發著作權侵權爭議

  網路搜尋引擎的巨人 Google ,近來有一項計畫,即對圖書館中的書籍做掃瞄,然後讓使用者透過網際網路搜尋書籍的內容。由於 Google 計畫掃瞄供搜尋的書籍中,包括許多目前仍受到著作權保護的著作,因此 Google 此舉,是否造成對書籍著作權的侵害,便引發了相當的爭議。   在近日的一個討論會中,學者、作者與出版商群聚一堂,就 Google 此一計畫的合法性進行討論,並就是否對 Google 進一步提出訴訟做討論。 Google 宣稱,此一計畫是人類知識發展的一大進步,把人類的觀念與想法,做有系統的歸類整理,並讓大眾更容易接近與使用,對於人類知識的傳播與進步,有重大貢獻。   然而,作者與出版商方面,則認為 Google 此舉侵害的作者與出版商的著作權。就此,作者與出版商已做出回應。先前,美國出版商協會 (The Association of American Publishers, AAP) 已於 10 月 19 日對 Google 提起訴訟,希望經由法律的判決,認定 Google 的作法侵害著作權。從法律上來看, Google 此一計畫是否侵害著作權,確有爭議之處。從美國作者與出版商激烈的反應來看,將來有可能還會有其他的訴訟,甚至集體訴訟 (Class Action) 的產生,其後續效應,值得觀察。

TOP