澳洲國家交通委員會提出「自駕車政策革新報告」,並展開「控制自駕車規範建議」意見徵詢

  2016年11月澳洲國家交通委員會(簡稱NTC)公布「自駕車政策革新報告」(Regulatory reforms for automated road vehicles Policy Paper),當中釐清對自駕車各項可能遭遇的法規障礙並設定修正時程,2017年4月16號NTC並進一歩依前份文件規劃提出「控制自駕車相關規範建議」討論文件,釐清自駕車的控制定義與相對應規範,並提出法制規範修正內容。

  2016年澳洲政府並通過了關於陸路交通科技的「政策原則」(Policy Principles),其中包括政府決策時應基於改善交通安全、效率、永續發展和成果的可能實現,並且應以消費為中心等原則,這些原則構成了澳洲政府的政策框架。

  澳洲NTC此份討論文件中,提出應釐清能「控制(in control)」自駕車的對象,此將影響自駕車事故的負責人為誰。NTC提出目前仍應定義人類駕駛為控制自駕車的一方而非自駕系統,以避免人類駕駛做出不適當的操作行為。

  NTC並釐清「恰當控制」的定義。「恰當控制」為澳洲道路法規第297條第1項:「駕駛者不得駕駛車輛除非其有做出恰當控制」中所規範。恰當控制被目前的執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。但「恰當控制」將因自動駕駛系統的操作方式受到挑戰。因此NTC認為「恰當控制」不一定需要將手置於方向盤上,而是要有足夠的警覺性和能即時進行干涉,此定義並應隨著科技發展而修正。

  本次政策文件意見徵詢至2017年6月2日,收到意見後NTC將會意見納入未來的全國性實施政策方針,提交給澳洲交通與基礎建設諮議會(Transport and Infrastructure Council)通過,預計於2017年年底前完成此自駕車方針。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲國家交通委員會提出「自駕車政策革新報告」,並展開「控制自駕車規範建議」意見徵詢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7786&no=57&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
荷蘭資料保護局:Google隱私權政策違反該國資料保護法

  荷蘭資料保護局(Data Protection Authority, DPA)歷經長達七個月的調查,於2013年11月28日發布新聞稿,聲明Google違反該國資料保護法,因其未適當告知用戶他們蒐集了什麼資料、對資料做了些什麼事。   DPA主席Jacob Kohnstamm表示:「Google在未經你我同意的情形下,對我們的個人資料編織了一張無形的網,而這是違法的。」調查報告援引了Google執行長Eric Schmidt在2010年一場訪談中所說的話:「你不用鍵入任何字,我們知道你正在什麼地方、去過什麼地方,甚至或多或少知道你在想些什麼。」。   調查顯示Google為了展示個人化的廣告及提供個人化的服務,而將不同服務取得的個人資料加以合併,如搜尋記錄、所在位置及觀看過的影片等。然而,從用戶的觀點來看,這些服務係基於全然不同的目的,而Google亦未事先提供用戶同意或拒絕的選項。依照荷蘭資料保護法的規定,Google合併個人資料前,應經當事人明示同意,而該同意無法藉由概括(隱私)服務條款取得。針對DPA的聲明,Google回應他們已經提供用戶詳細資訊,完全符合荷蘭法律。   DPA表示將通知Google出席聽證會,就調查結果進行討論,並決定是否對Google採取強制措施。但是,從Google的回應看來,他們不太可能在聽證過後改變心意。以先前Google街景車透過Wi-fi無線網路蒐集資料的案例為鑑,Google(市值達3500億美元)若繼續拒絕遵循,將有可能面臨高達1佰萬歐元的罰鍰。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

惠普 : 軟體專利是必要之惡

  智慧財產權議題涉及專利、著作權和商業機密,近年來因開放原始碼軟體而備受矚目。開放原始碼軟體可共享、修改和重新發布,和傳統專屬軟體的保密性和發布限制迥然不同。   許多開放原始碼與自由軟體倡議人士都痛批軟體專利,相形之下,惠普以擁有大量的專利為傲。2004年惠普一共獲頒1,775項美國專利,在美國排名第四。   惠普Linux負責人表示,開放原始碼程式設計師或許厭惡軟體專利的概念,但最好還是試著自我調適,因為軟體專利是不會消失的。且開放原始碼軟體是在著作權法的基礎上發展而成的,而專利比較麻煩,是因為程式設計師把專利視為削弱他們的自由。另一方面,企業則把專利看待成自家珍貴創意的保護傘。   惠普Linux副總裁Martin Fink批評開放原始碼促進會(Open Source Initiative;OSI)核准開放原始碼授權證書的作法太草率。去年8月,Fink曾指出,開放原始碼授權證書多達52種,實在太多了。現在數目變得更多,因為他抱怨OSI核准任何符合開放原始碼定義的申請案,卻不試著加以整併以強化開放原始碼業的基礎。只基於符合規格就核准授權證書,而未顧及進一步鞏固開放原始碼經營模式的能力,這會構成明顯而迫切的危險。   一家銷售智財權法律免責保險的公司說,調查顯示,Linux作業系統的核心(kernel)可能涉及283項專利侵權。惠普2002年也提醒眾人,微軟可能醞釀對開放原始碼軟體提出專利訴訟。但目前為止這些威脅尚未發生,而紅帽公司(Red Hat)和Novell揚言運用自家專利反制那類威脅,IBM和昇陽也表明不會針對開放原始碼侵犯的數百項專利提出告訴。

談電磁紀錄證據定義與方法-比較加拿大電子證據統一法與我國刑事訴訟法相關規定

TOP