無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。
無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。
美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。
截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。
人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。
隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。 依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。 FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。
歐盟執委會提出「具可信度之人工智慧倫理指引」歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。 該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。
美國通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act)美國於2019年1月通過「開放、公開、電子化與必要的政府資料法」(Open, Public, Electronic, and Necessary Government Data Act),以下簡稱「政府資料公開法」,於2018年12月經參議院、眾議院通過後,2019年1月14日經美國總統川普簽署公布,為具拘束力的聯邦法。 聯邦政府往往擁有大量的寶貴資料,本法旨在要求聯邦政府機關在網路上開放發布其非敏感性資料時,應以機器可讀取的格式為之,使之更容易透過手機或其他電子設備使用(access)。意在擴大對政府資料的使用和管理,及促進私部門的創新,讓其它政府單位、各個組織或每個人都能使用這些資訊,使政府資訊透明化,同時兼顧隱私與國家安全議題。 政府資料公開法的內容係將歐巴馬總統於2013年5月9日簽署生效的「政府資訊應具有開放性和機器可讀性」(Making Open and Machine Readable the New Default for Government Information)之行政命令(Executive Order),正式立為聯邦法,促使數位政府之政策未來以開放為原則、不開放為例外。有論者認為本法原為行政指導性質之行政命令,改以法律位階為之,其原因係為了讓開放政府資料永續發展,以成文法框架拘束政府機關。 因此,該法內容在於修正美國法典第44編第35章「協調聯邦資訊政策」(Coordination of Federal Information Policy)之部分條文,主要重點整理如下: 第3502條中定義了資料資產(data asset)、開放政府資料資產(open Government data asset)、機器可讀性(machine- readable)和開放授權(open license)等。其中,「開放授權」之定義首次見於本法條文中,係指將資料資產開放供公眾近用時,針對該資料資產提供以下法律保障(legal guarantee),包含:允許公眾在毋須支付任何成本即可使用(at no cost to the public),而對於該資料資產的重製、發布、散布、傳播、引用,或改作皆不會受到限制。 聯邦政府向公眾釋出資料集時,除因智慧財產權之規定外,原則上不得加諸任何限制而影響到人民對於該資料的使用或再利用,並應以機器可讀格式(machine-readable)、開放格式(Open Format)、開放標準(Open Standard)的基礎下提供。 要求聯邦政府利用開放資料來強化其決策機制。 要求美國政府審計辦公室(Government Accountability Office, GAO)透過定期監督,來確保聯邦政府的問責制運作(accountability)。意即,GAO應向國會提交一份報告,該報告總結對機關的調查結果和趨勢,並給予其適當建議。(美國政府審計辦公室之角色為國會的監督審計機構,係立法部門的一部份,主要職責為協助、改善聯邦政府所訂的各項計畫及政策,向國會提供客觀、平衡的資訊。) 在第3520條、3520A條中,規範聯邦機構須編制首席資料專員(Chief Data Officers, CDO)及首席資料專員理事會(CDO Council),負責資料治理和執行其職責,並確保該機構遵守本法。