無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。
無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。
美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。
截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。
人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。
2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。 當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。
全方位提升生技製藥能力,德國提出生技製藥領域的價值創造補助新政策在製藥領域運用生物技術的方法來研發新藥與新醫療診斷方法,已有越來越重要的趨勢,且將成為未來醫療照顧的主流,因此各國政府均積極透過各種政策工具,企圖搶食此塊經濟利益的大餅,不過直到目前為止,推動生技製藥最為成功的國家,仍集中在少數幾個研發大國。一直以來,德國在製藥領域也是居有舉足輕重的科技領先地位,不過在涉及生技製藥這一塊,德國目前的成就有限,已成功上市而來源於德國的生技藥品,並不多見(2005年德國核准通過的140項新有效成分中,僅有6項由德國公司所研發)。另一方面,德國擁有全歐洲最多的生技公司數目,這些生技公司每年從事相當多的研發活動,但其與製藥公司卻甚少主動合作。為加強生技產業與製藥產業的連結與合作,德國聯邦教育與研究部(Bundesministerium für Bildung und Forschung, BMBF)新近提出了新補助政策-「生技製藥之策略性競爭」(Strategiewettbewerb BioPharma),企圖為德國重新贏回世界藥局(Apotheke der Welt)的美名。 這個新的策略規劃所訴求的對象,是由主要來自於學術界的生技公司與傳統的製藥產業界所成立的合作團隊,而以企業型態經營者(Unternehmerisch geführte Konsortien aus Wissenschaft und Wirtschaft )。BMBF希望透過鼓勵建立這樣的合作關係,讓這些合作參與者提出各種有助於以更有效率的方法研發醫藥品的新策略性概念或創意(Ideen für neuartige strategische Konzepte vorzulegen, die die Entwicklung von Medikamenten effizienter machen),以填補生技製藥產業價值創造鏈中的漏洞。所謂的價值創造鏈,指從實驗室的研究、醫院的投入、到醫藥品的製造、甚至是最後端的藥局等各生技製藥研發乃至製造使用所不可缺的各重要環節。 由德國的這項新補助政策可以看出,在生技製藥領域,德國政府的補助方向已不再侷限於傳統的技術能力的提升,反而是如何串連整個產業鏈以發揮價值創造的最大效益,為此一補助新政策的最大特色。由於補助的目的是在實現價值創造,因此補助去進行價值開發與規劃的醫藥技術項目,也沒有特別限定,反而是希望可以涵蓋所有可能的醫藥技術領域,因此包括抗癌藥物與治療神經系統方面疾病的藥物研發、開發新的疫苗或疾病診斷用的生物標記、以及如何建構臨床研究的新基礎架構(der Aufbau neuartiger Infrastrukturen für klinische Studien)等,均屬BMBF徵求創意的範圍。 經BMBF邀集由國際專家組成的評選委員會評選通過的創意,將可在未來五年獲得BMBF的經費持續協助。BMBF預計選出五個產學合作聯盟,投入總計一億歐元的經費支持,預計在今(2008)年秋天,將可順利選出五個補助的對象。BMBM的此項新補助政策受到生技製藥產業界的廣大迴響,成功引導德國生技產業與製藥產業構思各種可能的合作模式。BMBF表示,其在選擇適格的合作聯盟作為補助對象時,最重要的考量標準為合作夥伴的個別經歷介紹、其有無執行能力、是否具備執行所需的基礎環境條件、所提出的合作概念是否足以使其具備國際競爭優勢,以及所規劃的醫療技術發展是否具有創新性、原創性與市場潛力。
中國大陸商務部《不可靠實體清單規定》中國大陸商務部於2020年9月19日發布「不可靠實體清單規定」(商務部令2020年第4號),作為建立對外國實體(包含外國企業、其他組織或個人)與中國大陸貿易或投資等國際經貿相關活動實施限制之依據。即便中國大陸商務部主張「不可靠實體清單規定」係為落實《對外貿易法》與《國家安全法》之要求,並未針對特定國家或特定實體,但在美中貿易對抗局勢下,仍被認為顯係針對美國商務部貿易管制規則「實體清單」的反制作為。 依據「不可靠實體清單規定」,中國大陸政府堅持獨立自主的對外政策,互相尊重主權並互不干涉內政,在平等互利的原則下,任何外國實體在國際經貿及相關活動中,凡涉及危害中國大陸國家主權、安全、發展利益,或是違反正常的市場交易原則、中斷與中國大陸企業、其他組織或個人的正常交易,或是對中國大陸企業、其他組織或個人採取歧視性措施,嚴重損害其合法權益,中國大陸即有權透過建立不可靠實體清單制度,對上述外國實體採取相應措施。 中國大陸國務院商務主管部門將設置專責組織,負責就經建議或舉報之外國實體進行調查,凡經調查而被公告列入不可靠實體清單者,中國大陸政府可採取的相應措施包含限制或禁止與中國大陸有關之進出口活動、在中國大陸境內投資、限制或禁止其相關人員或交通工具等入境、限制或取消相關人員的工作許可或居留資格、相應數額的罰款或其他必要措施。若中國大陸企業、其他組織或個人因特殊情況須與被限制之外國實體交易,應事前提出申請取得同意。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。