企業監看員工網路活動法律爭議之防堵

刊登期別
2005年01月,第175期
 

相關附件
※ 企業監看員工網路活動法律爭議之防堵, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=780&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
科技產業申請租稅減免 國稅局:申報浮濫

  高科技企業申請促產條例相關租稅減免浮濫,尤其是在可享高額抵減的研發項目上,爭議最多。實務上,人才培育的投資抵減減稅空間較少,頂多幾十萬元或幾百萬元,但研發投資抵減最高可達幾十億元,因此常見的爭議也最多。由於研發費用可提列為費用、又可抵稅,對企業來說效益很高,因此很多公司都先申報為研發費用,等被國稅局查到再說;另將製造、銷售費用列為研發費用的情形不勝枚舉。   依照公司研究與發展及人才培訓支出適用投資抵減辦法審查要點第1點附表,研發支出只有包括全職研發人員薪資等九種支出才能抵減,而且業者須附薪資表及證明文件證明,才能減稅。但因為研發誘因優渥,企業總是先報再說,因此行政法院投資抵減的相關訴訟,十之八九都是國稅局勝訴。根據公司研究與發展及人才培訓支出適用投資抵減辦法第5條規定,公司的研發支出,在同一課稅年度內得按百分之三十抵減當年度應納營所稅額;支出總金額超過前二年度研發經費平均數者,超過部份得按百分之五十抵減當年度應納營所稅,當年度營所稅額不足抵減者,得在以後四年度營所稅額抵減。   國稅局提醒,申請研發減免企業必須提供研究計畫等證明,否則舉證不足反將被國稅局要求補稅,恐衝擊公司當年獲利。一般來說,適用投抵減稅金額愈高的公司,也愈常被選案查核,確保公司沒有僥倖逃稅心理。如果投抵項目涉及大陸地區,像是人才培訓支出,則應依臺灣地區與大陸地區人民關係條例第24、25、25條之1條等法令規定,經主管機關核准,否則也將遭國稅局剔除補稅。

英國提出「緊急應變與復原準則」強化災難時之應變規定

  英國內閣辦公室(Cabinet Office)於2013年10月29日提出「緊急應變與復原準則:依循2004年國民緊急應變法之不成文準則」(Emergency Response and Recovery: Non statutory guidance accompanying the Civil Contingencies Act 2004),針對「應變與復原」作相關規定,以補充內閣辦公室於2006年1月1日提出「緊急準備規則」(Emergency Preparedness)對複合式緊急管理(Integrated emergency management, IEM)規定的不足之處。   英國「2004年國民緊急應變法」(The Civil Contingency Act 2004),為英國處理緊急事件之主要依據,「緊急應變與復原準則」即根據「2004年國民緊急應變法」制訂。此規則於「緊急應變章節」規定地方政府之緊急事件依嚴重程度區分為三級:銅(Bronze),僅需要操作指揮(Operational)、銀(Silver),需要策略指揮 (Tactical)、金(Gold),需要戰略指揮(Strategic),用以判斷是否區需要跨機關合作來因應緊急事故。如事故屬於重大緊急災難時,則屬於需要跨機關協調合作,藉由層級指揮及指令下達掌控應變程序與資訊傳遞,以因應長期及廣泛區域之災難。中央政府的權責在於全國性重大緊急事件,並且災難發生時之首相為最高行政首長,最高緊急機構為「內閣緊急應變會議」(Cabinet Office Brifing Rooms, COBR,又稱為眼鏡蛇),同時國民緊急秘書處(Civil Contingencies Secretariat, CCS)也需要協調跨部門及跨機構事務。   為提升災難應變與復原效率,2013年10月的「緊急應變與復原準則」,說明藉由地方的地方抗災議會(Local Resilience Forum)到中央等全國性之系統與網路串聯以傳遞緊急訊息,並建立三種層級之共同認知資訊圖像(Common Recognized Information Picture, CRIP),包括地方層級、區域以及國家級。此項系統必須足以傳遞並收集來自各方的大量資訊、能評估所收集各資料之性質,如緊急性、關聯性、說明性及可使用性等,並且能夠使大眾週知。   然,處理資料的過程仍有可能面臨數種問題,包括各機關之資料不同、判斷不同、理解錯誤及通訊超載等。2013年10月緊急應變與復原準則亦說明建立資訊管理系統(information management system)並安裝至多機構緊急管理中;而民間機構也應作為多機構之一環,並擔任資訊管理機構。同時,在共享資料之同時,必須注意資料保護,因此必須遵守「資料保護與共享-緊急計畫人與應變人準則」(Data Protection and Sharing-Guidance for Emergency Planner and Responders)。英國地域性與台灣近似,皆屬易於發生水患的國家,英國在緊急災難之應變於各方面的法制皆以趨於完善,殊值得持續觀察未來發展方向。

日本通過數位社會形成基本法

  日本國會於2021年5月12日,通過由内閣官房資通訊技術總合戰略室提出之數位社會形成基本法(デジタル社会形成基本法)。數位社會之形成,將有助於提升國際競爭力與國民便利性,因應少子化、高齡化與其他重要課題,本法之立法目的係為推動數位社會形成,使日本國內經濟健全發展,幫助國民幸福之實現。   本法之重點概如下述: 數位社會之定義係指藉由先進資通訊技術,適當有效活用各式各樣大量之電磁紀錄資訊,使各領域均得創新蓬勃發展之社會。 數位社會形成之理念係為了使國民生活能切實感受到寬裕和富足,實現國民得安全安心生活之社會,降低數位落差,並確保在數位社會下,個人與法人權利以及其他法律所保護之利益。 國家須制定數位社會形成之政策,具體包含確保高度資訊通訊網路與資通訊技術之可及性、整合國家與地方自治團體資訊系統、使國民得活用國家與地方自治團體之資訊、建立公部門基礎資訊資料庫、確保資通安全等。 為形成數位社會,明定國家、地方政府及企業之相關責任義務。 依數位廳設置法設置由內閣管轄之數位廳,並制定數位社會形成相關之重點計畫。 廢止高度資通訊網路社會形成基本法(IT基本法),以數位社會形成基本法為新資通訊技術戰略。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP