日本總務省下設之實現車聯網社會研究會(Connected Car 社会の実現に向けた研究会,下稱車聯網研究會),於2017年4月19日第4次會議中提出當前日本車聯網面對之相關課題及策略目標。至目前為止日本智慧型運輸系統(Intelligent Transportation System)各自已發展出道路交通資訊通信系統(Vehicle Information and Communication System,簡稱VICS)、電子收費系統(Electronic Toll Collection System,簡稱ETC)、雷達防追撞(レーダー)等不同通訊技術,自動駕駛則發展至初期階段。日本當前發展中面臨其企業國際競爭力確保與強化、持續友善環境之可能性、高齡化及勞動生產力人口減少等問題。希望透過國家開發之系統及國際服務方式,利用交通資訊通信系統實現最佳的交通狀態,在人口稀少之地區利用無人駕駛系統,使駕駛不足之問題得以解決,對當地之購物及交通上可以加以協助。車聯網研究會設定之4大目標為:
透過利用車與車間通信等技術,降低事故之發生,普及車聯網等資通訊系統,車中行動模式之變革,並透過異業結合創造新的服務模式,達成安全、安心、便利之智慧聯網生活4大目標。
本文為「經濟部產業技術司科技專案成果」
美國懷俄明州眾議院(Wyoming House of Representatives)於2018年2月19日無異議地表決通過HB0070法案,該法案將鬆綁功能代幣(utility token)於懷俄明州證券法(Securities Act)之限制。該法案將送往參議院,若順利通過並經州長簽署核准,將於2018年7月1日生效,使懷俄明州成為友善的區塊鏈投資環境,預計吸引大量新創事業於該州進行首次代幣眾籌(Initial Coin Offerings, ICO)。 該法案針對功能代幣設有三種要件,僅於符合三種要件者始能作為法案所稱的功能代幣,得免受證券法規管。三種要件分別為:一、功能代幣之開發者和發行者不得將代幣作為投資而行銷;二、該代幣須可作為換取商品或服務之對價;三、該代幣之開發者或發行者不得主動進行附買回協議(repurchase agreement)或任何有意操縱代幣二級市場之價格之協議或策劃。 此外,懷俄明州另有三部有關區塊鏈之法案亦正待審議,包含同樣甫經眾議院通過之HB0019法案,使加密貨幣免受懷俄明州貨幣傳輸法(Money Transmitters Act)規範,有望可使加密貨幣在懷俄明州進行交易或交換。此外,正於眾議院進行二審的HB0101法案預計將修正懷俄明州商業公司法(Business Corporations Act),開放公司得使用區塊鏈來儲存資料並進行內部聯繫。又,尚待眾議院審議的SF0111法案預計使加密貨幣免於受州財產稅法之規範。
iTunes販售的音樂將移除數位權利管理措施大多數於iTunes(蘋果電腦販售數位音樂的商店)販售的數位音樂,將被移除音樂上的數位權利管理措施(DRM)。iPod的製造者在2009年1月6日發表聲明,將於iTunes販售多元化價格的音樂,價錢將介於美金$0.76和1.3元之間。著作保護軟體(copy-protection sofeware)同時也稱為DRM「數位權利管理措施」(digital right management),此項措施就像一個標籤記號,其設計是為了預防人們非法下載音樂,並且同時避免他們複製音樂於其他的電子裝置,而導致降低銷售量。 iTunes將移除八百萬首歌曲的數位權利管理措施。蘋果電腦的執行長Steve Jobs早在2007年2月公開呼籲知名唱片公司放棄數位權利管理措施,但唱片公司藉此希望iTutes改變以一首歌曲固定價格美金$0.99元的規定,用以多元化的價格販賣歌曲作為交換的條件。 另外,iTunes提供消費者一個簡單的方式,只要在每首音樂多付美金$0.3元,或者是多付每張專輯價錢30%的金額,即可將原先買到的音樂換為移除數位權利管理措施的音樂。Steve Jobs說到,我們十分興奮可以在iTune提供消費者沒有數位權利管理措施的音樂,使用iPhone 3G的消費者能夠在任何地區、任何時候以同樣的價錢去下載音樂。iPod Touch Wifi的使用者同樣也可以在App Store(蘋果電腦官方線上商店)去買到同樣無數位權利管理措施的歌曲 。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
世界經濟論壇發布《贏得數位信任:可信賴的技術決策》世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。 由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟: 1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。 2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。 3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。 4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。