美國國土安全部保護物聯網策略原則簡介

刊登期別
第29卷,第2期,2017年02月
 
隸屬計畫成果
自主研究
 

你可能會想參加
※ 美國國土安全部保護物聯網策略原則簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7811&no=55&tp=1 (最後瀏覽日:2026/01/15)
引註此篇文章
你可能還會想看
產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案

調查指出:美國民眾對無線電視數位化缺乏準備

  美國審計部(Government Accountability Office, GAO)就無線電視數位化轉換一事進行調查並於2008年6月10日公布報告。該調查報告發現,雖然超過8成民眾對無線電視數位化有所認知,但亦有許多民眾認知有誤。   此外,該調查報告亦指出,收看無線電視之民眾中,45%尚未購買機上盒以因應無線電視數位化;反之並不需要為數位化進行準備之民眾(如收看有線電視或衛星電視者),卻有30%表示已經做好無線電視數位化之因應措施。在此同時,仍有部分低功率電視台將不會全面數位化,故接收無線電視之民眾可能必須備有同時可接收類比與數位訊號之設備,方能夠維持其無線電視的收視。   為鼓勵民眾購買數位機上盒,美國國家電信與資訊管理局(National Telecommunications and Information Administration, NTIA)稍早已經發出80萬張折價券,但僅有不到一半的折價券被使用,至於尚未被使用的折價券亦已逾期而無法使用。   除機上盒的準備外,隨著訊號數位化,無線電視台的訊號強度及受干擾程度也將有所改變,故無線電視台需調整電台或天線的位置,以避免部分地區民眾在數位化後無法收看清晰的影像。美國通訊傳播委員會之工程師指出,約有1%的民眾可能會有前述困擾,但截至目前為止,仍有部分電視台受限於經費問題而尚未有所因應。

Ofcom建議ISP之寬頻廣告應以平均速度為準

  鑑於ISP對於寬頻服務的廣告速度常與實際提供速度有落差,英國廣告標準管理局(Advertising Standards Authority,ASA)要求廣告事務委員會(Committee for Advertising Practice,CAP)與廣播廣告事務委員會(Broadcast Committee for Advertising Practice,BCAP)針對英國各地區的ISP寬頻廣告進行審查,CAP與BCAP則委託Ofcom進行各ISP實際寬頻服務速度之調查。   Ofcom於2010年11月~12月期間,針對ADSL、Cable及光纖等寬頻服務進行各時段的大規模測試。綜合以往的調查,Ofcom研究結果發現,英國寬頻服務平均速度約從 5.2 Mbps(2010年5月)至6.2 Mbps的(2010年11~12月),但不到廣告所宣稱速度之一半(平均寬頻廣告速度為 13.8 Mbps,故僅約45%。)   在各種寬頻技術中,ADSL的廣告與實際落差最大,廣告宣稱8Mbps之速度,實際平均僅有2~5Mbps;而Cable的廣告與實際落差最小,實際速度均能達到廣告速度的90%左右;光纖寬頻則約在80%~90%之間。      Ofcom並建議將以下原則增訂至英國寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds)中 • 如果寬頻速度是廣告內容,必須包括一個「典型的速度範圍」(Typical Speed Range,TSR),計算依據為將某一速度之使用者依照實際接取速度分為四等級,去掉最高與最低,取中間50%使用者之平均速度為準; • TSR必須至少與宣稱之速度相當; • 宣稱的速度必須代表相當大比例使用者能夠接受的實際速度; • 任何TSR或宣稱之速度在用於廣告時,必須是基於足夠的分析統計數據,而該數據與方法應經過審議。   Ofcom認為ISP的寬頻廣告應反映消費者能接受之實際速度,因此改變廣告規範是必要的,以促使各ISP進行以速度為基礎之競爭,並確保消費者有充分資訊可比較、選擇最有效率之寬頻服務。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP