歐盟智慧財產局(EUIPO)於2023年6月底發布了《歐盟營業秘密訴訟趨勢報告》(Trade Secrets Litigation Trends in the EU),本報告包含三大部分,分別為判決之量化分析、法律要件之質化分析、各會員國之重要判決摘要,內容涵蓋了2017年1月1日至2022年10月31日間,27個會員國的695個訴訟案件。其重點摘要如下: 一、案件涉及之類型分析 1、約41%的案件與離職員工有關。 2、約17%的案件與商業合作對象有關。 3、約30%的案件雙方無明確的契約關係(但報告中指出此項統計包含員工離職後自行創業,原告以該離職員工及該公司為被告的情況)。 二、案件涉及之營業秘密標的分析(同一訴訟案件可能包含多個標的) 1、約62%的標的為「商業性營業秘密」。其中配銷通路(distribution methods)、廣告策略、行銷資料、客戶名單等供應鏈「下游資訊」(downstream information)占31%最多;定價模式及會計資料等「財務資訊」占13%次之。 2、約33%的標的為「技術性營業秘密」,其中有19%與「製程」(manufacturing process)有關。 3、僅3%的標的為原型(prototypes)或尚未公開的產品設計。 三、案件涉及之產業別分析(根據「歐盟標準行業分類第二修正版NACE Rev. 2」分類) 整體來說,歐盟營業秘密訴訟案件所涉及的產業別相當多元,簡要說明如下: 1、排名第一的產業別為「製造業」(manufacturing),占32%。其中最常涉訟的子產業別為「機械設備製造業」(manufacture of machinery and equipment)及「化學製品製造業」(manufacture of chemicals and chemical products)。 2、排名第二的產業別為「批發及零售業;汽機車維修業」(wholesale and retail trade;repair of motor vehicles and motorcycles)占11%。 3、排名第三的產業別為「金融及保險業」(financial and insurance activities)及「專業、科學及技術服務業」(professional, scientific and technical activities),分別占7%。 四、被告提出之抗辯分析 報告中指出,原告提出之營業秘密主張被法院採認的比例僅27%,有約73%的案件法院最終是做出有利於被告的認定。而被告最常提出的抗辯,第一為抗辯原告所主張之系爭資訊是普遍共知(generally known),不具備秘密性;第二為抗辯原告未採取合理保密措施。 最後,報告結論分析歐盟營業秘密判決的三大趨勢,其中一項趨勢指出,營業秘密所有人若要強化契約措施(如保密協議)於訴訟中的證明力,應明確識別與界定系爭營業秘密的範圍。因此,企業應建立營業秘密管理的整體政策(譬如與員工簽訂之勞動契約中,應明確界定其保密義務範圍;員工離職時應落實離職面談,再次提醒員工應遵守的保密義務範圍等),以便於發生爭議時有效主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
歐洲專利局《2023年戰略計畫》歐洲專利局(The European Patent Office, EPO)於2019年6月27日發布《2023年戰略計畫》(Strategic Plan 2023, SP2023),協助歐盟應對網路化和全球化的世界挑戰。該戰略計畫之重點為實現專利局五大策略目標,分別為:員工參與(staff engagement)、資通訊現代化(modernisation)、品質(quality)、歐洲專利網路(European patent network)和永續性(sustainability)。 該五大策略目標分述如下: 建立一個參與性、知識性及協作性的組織:幫助員工發揮其專業領域,以及重視識別、招募和留才之方法。 進行EPO 資通訊系統的簡化與現代化:包含支持端到端的電子專利授權流程、對現有技術數據庫進一步投資、並關注亞洲相關文獻與標準。 效率化提供高品質流程與服務:確保EPO的專利審查或其他作業流程及服務維持高標準,例如建立辦公室品質管理系統(QMS)和「早期確定」計畫(Early Certainty),加速專利核准程序。 建立具有全球影響力的歐洲專利制度和網路:加強歐盟成員國與歐盟以外國家專利局之合作,並定期檢視歐洲專利局對其他國家的財務與營運支援,在加強國際參與度與成本效益之間達到平衡。 確保長期發展與永續:歐洲專利局擬建立觀察站(Observatory)作為一提供利害關係人進行討論和分析的平台。該平台將為減少碳排放、降低能源消耗、降低紙張消耗以及減少使用塑膠等訂定明確長期目標。