為了持續維持日本國內以及與東京奧運舉辦相關的關鍵基礎設施服務的安全性,日本內閣網路中心於2017年4月19日公布關鍵基礎設施資訊安全對策第4次行動計畫。
在第4次行動計畫,關鍵基礎設施防護目的主要是以關鍵基礎設施的功能保證為考量,盡量減少關鍵基礎設施IT故障的發生,並提升從事故中恢復的速度。因此,第4次行動計畫除持續檢討並改善第3次行動計畫原有政策外,較重要的變革為OT(Operation Technology)的重視與風險對應機制整備。在安全基準整備與落實情況方面,要求關鍵基礎設施產業須將OT的觀點融入人才培育。在資訊分享制度方面,分享的資訊範圍應包含IT、OT與IoT的資訊,並排除資訊分享的障礙。而在風險管理部分,日本從功能保證的觀點出發,新增風險情況對應準備的要求,包含事業持續計畫的提出與緊急應變措施的制定等。而在防護基礎強化上,該行動計畫認為關鍵基礎設施產業的IT、OT人員及法務部門必須依其內部資訊安全策略共同為關鍵基礎設施安全而跨組織合作。
另外,第4次行動計畫變更電力領域關鍵基礎設施的重要系統,從原有的運轉監視系統變更為智慧電表,以及新增化學、信用卡與石油三大關鍵基礎設施領域的業者、關鍵系統與因IT故障對關鍵基礎設施可能造成的危害影響。
澳洲通訊暨藝術部(Department of Communication and the Arts)在2019年10月宣布,依據通訊部(Department of Communications,為通訊暨藝術部的前身)在2015年所發布頻譜檢視報告(Spectrum Review Report)之建議,推行頻譜改革(Spectrum Reform)措施,以落實改善頻譜管理並建立更有效的頻譜監管框架。其中最重要者為分階段修正現行之無線通訊法(Radiocommunication Act 1992),包含為頻譜使用者提供更高的抗干擾保護,並減除其投資頻譜的不確定風險,例如消除頻譜分配與重分配過程中不必要的限制、延長頻譜許可期限至20年、提供清楚明確的頻譜許可更新指引,並盡可能使設備執照(Apparatus Licence)與頻譜執照(Spectrum Licence)保持一致性。 因應現代通訊技術的發展,澳洲政府自2018年來持續推動頻譜管理現代化(Modernising spectrum management in Australia),包含提高頻譜管理的透明度與定價效率,以達成提高頻譜的使用效率,並建立單一的頻譜釋照框架,這些都將納入現正推動無線通訊法的修正中。此外,澳洲通訊與媒體局於2019年10月25日宣布將釋出26 GH頻段中的2.4 GHz(25.1至27.5 GHz),預計在2021年以拍賣方式分配頻譜執照,除了頻譜釋出外,通訊與媒體局計畫藉由設備執照、類別執照(Class Licence)以及頻譜執照三者的靈活組合,滿足澳洲5G技術應用的頻譜需求,並符合無線通訊法第3條「透過確保有效分配與使用無線電頻譜以最大化其使用效益,進而提升使用無線電頻譜之整理公共利益」之目標,來推動5G技術與創新應用的早期部署。
紐約市議員向議會提出禁止行動裝置相關業者共享客戶位置資訊的法案紐約市議員Justin Brannan於2019年7月23日向紐約市議會提交一項內容為禁止電信公司和手機應用程式開發商與第三方共享客戶位置資訊(location data)的法案(Int 1632-2019, Prohibition on sharing location data with third parties.)。 該法案原則上,禁止電信公司和手機應用程式開發商與第三方(例如:行銷人員)共享客戶的位置資訊,主要原因在於一般客戶並不清楚自己的位置資訊被共享給第三人,且對於第三人取得其位置資訊後的利用行為存有疑慮。又,位置資訊應屬個人隱私的一部分,故未取得客戶本人同意,即共享其位置資訊無疑是對客戶個人隱私的侵犯。如公司違反法案規定,執法機關對該公司之罰款,以「行為次數」作為計算單位,每次課予1,000美元,惟就同一名受害者,如一天內有數個違法行為,則當天罰款上限為10,000美元。同時,該法案賦予位置資訊被違法共享的當事人,得就其權利被侵害之事實,向法院提訴訟,以為救濟。 不過,該法案並非「絕對」禁止位置資訊的共享,如屬下列情形,例外可共享: 為配合執法機關執行法定職務之所需,如:法律調查等程序,而提供客戶之位置資訊。 為911緊急服務之所需提供,或為免除本人之生命或財產上之急迫危險,提供其位置資訊。 聯邦法律、州法或地方法明文要求應提供。 客戶授權電信公司或手機應用程式開發商得與第三方共享其位置資訊。 這部法案主要目的在於,保障行動裝置使用者的位置資訊,不會在當事人不知情的情形下被提供給第三方。雖然目前該法案尚在審議中,但未來如果通過,紐約市將成為禁止出售個人行動裝置位置資訊的先鋒,同時其執行結果勢必也將成為關注焦點。
藥品監管機構負責人組織與歐洲藥品管理局聯合巨量資料指導小組發布2021-2023年工作計畫,提高巨量資料於監管中之效用藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)