日本特許廳(Japan Patent Office,JPO)從去(2016)年12月開始,與NTT Data公司合作,使用人工智慧(Artificial Intelligence,簡稱AI)來系統化的回答有關專利問題,且依成果顯示,與原先運用人力回復的成果相當;JPO因此決定於今(2017)年夏天開始,將AI技術分階段應用於專利及商標的審查案,並期望能於下一會計年度(2018年4月至2019年3月),在審查業務中全面運用AI技術。
JPO指出,透過AI技術能有助於將專利及商標審查程序中繁冗的檢索程序簡化,以專利審查為例,可搜尋大量文件與檔案,進行專利先前技術檢索,以確保相關技術尚未獲得專利保護,同時也可以協助專利分類;此外,商標審查亦可利用AI之圖像辨識技術比對圖片及標誌,找出潛在的類似商標。
AI技術被證實能提升審查效率,並減輕審查人員檢索與比對部份的工作負擔,有助於抑制人工審查的長時間工作型態,根據2017年日本特許廳現況報告(特許庁ステータスレポート2017),於導入AI技術後,原本從申請到審查完成平均約2年左右之審查時間,期望可在2023年將審查期間降到14個月,讓日本成為智慧財產系統審查最快且品質最好的國家之一。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
印度「專利設計與商標管理局」(Controller General of Patents, Designs and Trademarks)於2016年2月19日發佈最新的「審查電腦相關之發明專利準則」(Guidelines for Examination of Computer Related Inventions, CRIs),決定在專利申請之審查程序中落實印度於1970年所制定的專利法(Patents Act, 1970)之意旨,未來當局將不再受理與電腦相關的軟體專利申請案。印度《專利法》第3條第k項排除本質上為數學演算法、商業方法與電腦程式運算法則等申請案之可專利性(Patentable)。該規定在印度《專利法》於2002年、2004年與2005年修法過程中,雖面臨各方利益團體試圖影響國會立法放寬法定可專利性範圍的壓力,但仍然為印度國會(Bhārat kī Sansad)所保留。 然而,印度「專利設計與商標管理局」卻於2015年8月21日發佈違反《專利法》意旨的CRIs,導致軟體專利的可專利性被實質上放寬。一般認為開放申請軟體專利的政策將會阻礙新創公司的發展,並有利於所謂「專利主張實體」(Patent Assertion Entity, PAE)藉大量軟體專利向一般公司提起訴訟或請求授權金,導致印度當局遭受國內新創軟體公司與相關非政府組織的激烈抗議。 「自由軟體法律中心」(Software Freedom Law Center, SFLC)與「印度軟體產品圓桌會議」(Indian Software Product Industry Round Table, iSPIRT)等機構即代表眾多新創公司與學術界人士上書印度「總理辦公室」(Prime Minister’s Office),請求政府對2015年8月發佈的CRIs進行檢討。SFLC等組織的積極作為,成功說服印度當局作出暫緩該高度爭議的CRIs生效之決定。代表SFLC等組織的專家表示,印度的軟體已受到《著作權法》與《營業秘密法》的足夠保障,進一步開放發明人申請軟體專利只會對該國軟體產業並無助益。 印度當局與相關團體在數個月間密集的進行研議,終於在2016年2月決定修正原先發佈的CRIs,使其回歸印度《專利法》不開放軟體專利申請的立法意旨。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。
日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。 SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。 研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。
共享經濟創新商業模式於歐盟各國發展所遭遇之公平競爭議題共享經濟(Sharing-economy)為近來很夯的議題,其概念係藉由網路平台分享自有資產、資源、時間及技能及其他有用的事物,透過資源分享能更有效利用或者獲得收入。共享經濟不僅能夠促進經濟成長、鼓勵創業,同時也促進資產有效再利用,許多創新服務成功案例,例如Uber、Lyft、Airbnb等因此產生,然而,這類型之創新商業模式推展至世界其他各國發展時,卻遭遇到法規範的差異,與各國政府監督與管理出發點的不同,對各國政府與創新商業模式皆成為未來的挑戰。 舉例來說,目前Uber公司在法國、西班牙和德國等國禁止其提供服務,由於德國政府認為Uber未事先依法律規定辦理司機與營業車輛登記,故禁止Uber於德國境內服務;而西班牙政府認為Uber公司未取得經營執照,亦禁止其於西班牙提供服務。然而Uber公司認為,上述國家對於公司的發展已產生限制競爭與不公平的對待,進而向歐盟執委會(European Commission)提出申訴。 依歐盟條約(The Treaty on the Functioning of the EU, TFEU)規定,歐盟會員國各該內國法之制定原則上不可抵觸歐盟競爭法(EU competition laws),是以,各該歐盟會員國必須遵守歐盟競爭法訂立至少符合歐盟競爭法的相關規範。因此,若認為歐盟會員國的規範與實務操作有悖於歐盟條約所制定之公平競爭規則時,可向歐盟執委會提出申訴,該委員會如發現確實有違背公平競爭規則時,可要求該歐盟會員國修訂其國家的監管制度。 對此,歐盟、各該會員國之監管部門、市場競爭當局試圖尋找解決問題的平衡點,並在適當的監管與促進創新與競爭的環境下,俾利共享經濟於各國的推動與發展。