「聯合國2017年年度隱私報告聚焦政府監督行為」

  聯合國人權理事會(Human Rights Council)於2016年3月8日依據28/16號「數位時代下之隱私權」(Right to Privacy in the Digital Age)決議,設立隱私特別報告員(Special Rapporteur on Privacy, SRP),專責調查各國隱私保護情形並每年定期向人權理事會和聯合國大會提交隱私報告(Report of the Sepcial Rapporteur on the right to privacy)。

  2017年年度隱私報告(A/HRC/34/60)於2月24日提出,報告除延續第一年報告中所列出的五大隱私優先課題 (跨國界隱私認知、安全與監督、巨量資料與開放資料、健康資料、企業擔任資料管理者議題等),主題聚焦於「情報蒐集」行為的監督,將政府監督行為歸類為十項:

  1. 基於使用國際化、標準化的術語和語言而有監督必要;
  2. 基於了解國家體系、體系比較之監督必要,以秘密(secretive)或公開形式進行;
  3. 促進、保護基本人權之相關措施;
  4. 保障與救濟措施(隱私特別報告員建議採國際性層次);
  5. 責任與透明度;
  6. 為蒐集、討論實務實踐狀況;
  7. 對政府監督行為之進一步討論;
  8. 尋求與公民溝通管道;
  9. 基於放寬安全部門、執法機關秘密性監督之必要;
  10. 基於對政府監督議題之公共論壇需求。

  期中報告對現階段政府監督行為以隱私友善(privacy-friendly)立場出發,總結後續推動方向如下:

  1. 為何民粹主義(polulism)、隱私兩議題與安全議題會產生衝突;
  2. 國家如何透過監督情報增進隱私保護;
  3. 誰有權主張隱私權,隱私權的普世性(universality)於政府監督行為具特別意義;
  4.  隱私權如何透過內國法、國際法的推動而更加落實;
  5.  透過更廣泛討論,關於監督的法律文件及相關國際法規範可期待成熟發展。

相關連結
你可能會想參加
※ 「聯合國2017年年度隱私報告聚焦政府監督行為」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7843&no=64&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
諾基亞採用蘋果開放軟體

  手機大廠諾基亞( Nokia )將在下一代智慧手機的瀏覽器中,採用蘋果電腦的開放原始碼軟體。其預定在今年六月推出 Series 60 智慧手機軟體包,其中的瀏覽器將整合數個同於蘋果 Safari 網路瀏覽器的開放原始碼科技– WebCore 和 JavaScriptCore 。 Safari 是以開放原始碼 K Desk Environment 之 Konquerer 瀏覽器的 KHTML 與 KJS 為基礎。   諾基亞表示,採用開放碼軟體後,將更方便開發商修改定作其新瀏覽器,並將提供新的使用者功能。諾基亞並且表示,未來仍將與蘋果電腦合作開放原始碼軟體,並積極投入開放原始碼社群。諾基亞對開放原始碼的興趣,在瀏覽器部門特別明顯。兩年前,該公司投資 Mozilla 基金會的 Minimo 計劃,創造一種根據 Mozilla Gecko 翻譯引擎的電話瀏覽器。 Minimo 團隊準備在今夏推出針對微軟 Windows CE 作業系統的 0.1 版瀏覽器。

傳統織物及布料之圖樣是否能申請商標註冊—以「鬼滅之刃」為例

  最近不論在日本或是台灣,都吹起了一股鬼滅之刃的風潮。據統計,今年(2020)10月份所上映的鬼滅之刃劇場版,僅僅花了10天就達到超過100億日圓的票房收入。連日本首相菅義偉都在國會時質詢時說出「我也要用『全集中呼吸』來答辯」這番話。在這股風潮之下,出版者集英社有感於盜版猖獗,針對作品主角所穿的日本傳統服飾「羽織」的外觀圖樣申請商標,掀起網路上正反不同的討論。但是這樣的外觀圖樣是否可以申請商標呢?   依據日本商標法第6條規定,如果無法做為區辨與他人業務相關商品或服務之標準時,亦即不具「自他識別力」時,不得做為商標申請註冊如:地模樣(台灣稱「連續圖樣」商標)原則上即不得申請註冊。一般來說,如果連續圖樣非如Louis Vuitton 的經典Epi皮革般廣為人知,均難以做為商標申請註冊。   因此,若是鬼滅之刃中所使用的日本傳統市松(連續方格)花紋(為主角炭治郎所穿)及大麻葉花紋(為主角禰豆子所穿),較不易被認定具有自他識別力,而主管機關也不會希望因為商標而造成日本傳統和服業者的困擾。   此外,包括Cosplay玩家在內的反對者,也認為這些本來就是傳統的圖案,如果可以註冊商標,恐壟斷連續圖樣的使用。目前日本特許廳上針對相關申請案正在審理中,是否會核准註冊,值得後續關注。

美國競爭法主管機關發布反托拉斯執法與智慧財產權報告

  美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。   DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。   此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP