美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。 在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。 在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
醫療器材審核制度仍有爭議 歐洲議會延後表決時程在歐盟發生了諸如法國隆乳植入物醜聞(PIP scandal)以來的諸多事件後,歐盟醫療器材審核制度的革新更顯得刻不容緩。然而,歐盟執委會提案修正過往歐盟對於醫療器材之相關規範,強化市場化前(pre-market)的審核機制,引起了各界不同的意見,因此本年七月初,歐洲議會決定延後新指令修正案的表決至9月,以爭取時間取得各成員國代表間的共識。 為強化對於患者健康的保障,歐盟執委會(European Commission)於2012年提出醫療器材規則修正案(Proposal for a Regulation of the European Parliament and of the Council on medical devices),並包括對2001/83號指令等(Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009)的修正,已建立更完善的歐盟醫療器材管理機制。其中包括歐盟統一而集中的審核程序,此舉卻引起不同意見,認為過於科層化(bureaucratic)的市場化前審核制度設計,將阻礙研發且不見得對病患有利。有歐洲議會議員指出,現行制度雖有進化的必要,然集中化(centralisation)的審核工作,對於行政負擔的加重,或許不如先在各國家層級的管理機制進行強化。而歐盟醫療器材產業界也認為,集中統一化的審核機制,將會對於中小型研發企業造成衝擊,間接影響歐盟醫材類技術領域的科技研發,業界認為,新法案對於所謂對患者具有高風險第三類醫療器材(Class III devices)的審核,將使得患者延遲3至5年才能得到可以拯救其性命的產品,相對地卻沒有得到甚麼安全的提升。 七月初,歐洲議會公共健康與食品安全委員會(Public Health and Food Safety Committee, ENVI)決議將推遲法案表決至9月18日,屆時表決的結果,將主導未來歐盟醫療器材管理的主要方向。
美國公布「2050淨零排放之路:美國長期策略」美國於2021年11月1日公布「2050淨零排放之路:美國長期策略」(The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050),確立美國未來十年溫室氣體減量發展方向,希望透過聯邦政府與各州、地方政府間合作,並結合社會整體力量,使美國可以在2050年實現淨零排放,並支持更加永續、具彈性且平等的經濟發展,實現完全的零碳污染、強化經濟及提升大眾健康。 本報告首先強調從現在開始至2030年約十年間溫室氣體排放減量的重要性,並說明美國接下來將以溫室氣體排放減量,作為未來達成淨零排放目標之基礎。為了達成淨零排放,美國計畫自能源、產業的排放結構著手推動轉型,報告中公布五項具體目標: 電力脫碳化:近年來因為風力及太陽能等潔淨能源發電成本急遽降低,能源轉型的腳步也逐漸加快,在此基礎上,美國訂定2035年達到100%潔淨電能的目標,並預計電力部門可於2050年以前達到真正的淨零排放。 電動化或轉換為潔淨能源:推動各部門電動化,使交通、建築物及工業製程可以使用合理成本且具一定效率的電力作為主要能源;針對航空、海運及部分工業製程等以現行科技水準較難實現電動化的經濟活動,則推動轉換為氫能、永續生質能等較潔淨的燃料。 減少能源浪費:透過新技術的開發,提升能源使用效率,例如於新建建築物使用能源效率較優的設備、更新既有建物之設備、改善工業製程的能源效率等。 降低甲烷等非二氧化碳溫室氣體排放:採取適當措施以減少甲烷、氫氟碳化合物、氮氧化物等非二氧化碳溫室氣體之排放,包括於石油及天然氣系統加裝甲烷洩漏感測器,以監控其洩漏狀態,以及將冷卻設備中的制冷劑從氫氟碳化合物更換為環境友善的其他物質。 移除大氣中二氧化碳:增加自然碳匯,或以目前可實際運用的技術吸收大氣中的二氧化碳。 美國預計結合聯邦、地方政府,以及產業、學術機構、投資人等社會各界,透過政策執行,強化推動能源、運輸、土地利用等經濟活動的溫室氣體減量工作;同時,配合資金導入,支持並給予各部門足夠的誘因投入潔淨技術的開發,並透過合作,以減少技術開發時可能遭遇的障礙及付出的成本,帶動美國整體朝淨零目標邁進。