從間諜軟體談起

刊登期別
2005年12月,第222期
 

相關附件
※ 從間諜軟體談起, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=785&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
英國實行個人健康和社會照護資訊連結服務(care.data)

  隨著英國國家健康服務(National Health Service, NHS)的改革,英國於去(2012)年3月27日通過衛生和社會照護法(The Health and Social Care Act 2012)。當中一項主要的變革即是成立衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為醫療健康資料的專責機構。而這樣的變革,也影響過去病歷資料的蒐集、分享和分析方式。依據衛生和社會照護法的規定,HSCIC若受到衛生部長(Secretary of State for Health)指示、或來自照護品質委員會(Care Quality Commission, CQC)、英國國家健康與臨床卓越研究院(National Institute for Health and Clinical Excellence, NICE)、醫院監管機構Monitor的命令要求時,在這類特定情況之下,可以無需尋求病患同意,而從家庭醫師(GP Practice)處獲得病患的個人機密資料(Personal Confidential Data, PCD)。   今(2013)年3月獲NHS授權, 由HSCIC於6月開始執行的care.data服務,即是依據前述立法所擬定之方案。care.data藉由定期蒐集醫療照護過程中的相關資料,對病患於國內所為的各項健康和社會照護資訊(例如病患的住院、門診、意外事故和緊急救護記錄)進行具延續性之連結。以提供即時、正確的NHS治療和照護資訊給民眾、門診醫師和相關部門之官員,進而達到care.data所設定的六項目標,支援病患進行治療的選擇、加強顧客服務、促進資訊透明性、優化成果產出、增加問責性,並驅動經濟成長。   然而,由於care.data是以英國民眾就醫行為中,屬於基礎醫療的家庭醫師(General Practitioner, GP)系統為基礎,所提取的資料包括家族歷史、接種疫苗、醫師診斷、轉診記錄、生理指標,以及所有NHS處方。其次,care.data在進行初級和次級資料連結時,將會透過NHS號碼、生日、性別和郵遞區號,這四項可識別資料的比對。因此雖然care.data在涉及敏感性資料時會加以排除,但此項服務仍引起社會上相當大的爭議。包括部分醫師、隱私專家和的社會團體皆提出質疑,質疑care.data是否有充分告知病人、HSCIC所宣稱的匿名性是否足夠、此項服務對醫病關係的衝擊、該服務所宣稱的資料分享退出機制(opt-out)並未妥善等。   care.data是NHS所推出的創新資料現代化服務,但同時也涉及病患隱私權保護之議題。反觀我國近來所推動的醫療健康資訊加值再利用政策,英國的案例值得我們持續觀察其發展。

日本特許廳持續就專利商標查詢平台(J-PlatPat)進行效能優化

  國際智慧財產權的檢索、查詢,幫助技術、競爭的情報蒐集,是企業能夠規劃出智財布局的優先前提。日本特許廳為提升「專利商標查詢平台」(J-PlatPat)之功能及查詢便利性,規劃就現有平台機能進行擴充,預計在2019年5月時,全面改版完成。特許廳本次J-PlatPat的改版,主要更新或擴充項目包括:將設計專利及商標於審查、審判階段之文件納入可查詢之範圍,並縮短資料上傳時間,使相關文件於上傳隔日即可查詢;增加商標存續狀態之呈現,並增加已廢止商標之檢索;採用人工智慧進行翻譯,提升翻譯品質等;亦針對關鍵字、搜尋結果排序、圖面之運用、設計專利之圖面呈現方式進行優化。   改版後之專利、商標檢索系統便利性,大幅提升,使用上亦毋需支付任何費用。日本特許廳J-PlatPat(https://www.j-platpat.inpit.go.jp/)是個免費的資源,我國企業、學界的智財實務工作者可善加運用此平台,更有效率地達成技術和競爭情報檢索,在專利、商標的國際性競爭中勝出。

日本總務省公布「2010次世代寬頻整備策略」

  日本總務省遵照其「u化日本政策報告」(2004年12月公布)以及IT策略本部「IT新改革策略」(今年1月公布)之規劃方向,8月11日正式對外公布「2010次世代寬頻整備策略」,以2010年該國寬頻覆蓋率超過百分之九十,作為寬頻基礎建設整備之政策目標。 詳言之,依照前開策略之記載,一則希望2008年底該國所有市町村均得接取寬頻,以求消弭目前尚有部分地區根本無從接取寬頻之區域落差現象,再則預計2010年底,全國能有超過百分之九十的家庭得以接取上傳下載雙向速度均超過30Mbps之超高速寬頻。於此過程,固然原則上係由民間主導相關整備活動之進行,惟官方亦應本諸技術中立之立場,施行適切之競爭政策,規劃吸引業者投資之誘因;其中,位處偏遠、投資效益可能偏低之地區,宜藉由中央、地方、居民、業者等各界相互交流合作,並配合技術層面之進展,妥善進行。另外,宣導整備成果、開發創新應用、維繫安全環境等,均屬重要,亦應於前開寬頻整備過程一併積極推動,以利後效。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP